
Summary: Artificial Intelligence - A Modern Approach

Mohamad H. Danesh

April 2020

Contents

1 Introduction 3

2 Intelligent Agents 4

3 Solving Problems By Searching 7

4 Beyond Classical Search 11

5 Adversarial Search 14

6 Constraint Satisfaction Problems 16

7 Logical Agents 18

8 First-Order Logic. 21

9 Inference in First-Order Logic 22

10 Classical Planning 23

11 Planning and Acting in the Real World. 25

12 Knowledge Representation. 27

13 Quantifying Uncertainty. 29

14 Probabilistic Reasoning. 31

15 Probabilistic Reasoning over Time. 33

16 Making Simple Decisions. 34

17 Making Complex Decisions. 35

18 Learning From Examples. 37

19 Knowledge in Learning. 40

20 Learning Probabilistic Models. 41

21 Reinforcement Learning. 42

22 Natural Language Processing. 45

1

23 Natural Language for Communication. 47

24 Perception. 48

2

1 Introduction

• Definition of intelligence: perceive, understand, predict, and manipulate a world far larger and
more complicated than itself.

• AI definition lies in these aspects: ”thought processes and reasoning” vs ”behaviour” and
”humanly” vs ”rationally”.

– Acting humanly: Turing test.

– Thinking humanly: Cognitive modeling approach, in line with cognitive science.

– Thinking rationally: The ”laws of thought” approach, in line with logic.

– Acting rationally: The rational agent approach, which is an agent acting so as to achieve
the best expected outcome.

• The quest for ”artificial flight” succeeded when the Wright brothers and others stopped imi-
tating birds and started using wind tunnels and learning about aerodynamics.

• Aristotle: actions are justified by a logical connection between goals and knowledge of the
action’s outcome.

• Craik specified the three key steps of a knowledge-based agent: (1) the stimulus must be
translated into an internal representation, (2) the representation is manipulated by cognitive
processes to derive new internal representations, and (3) these are in turn retranslated back
into action.

• knowledge representation the study of how to put knowledge into a form that a computer
can reason with.

• The new back-propagation learning algorithms for multilayer networks that were to cause an
enormous resurgence in neural-net research in the late 1980s were actually discovered first in
1969 (Bryson and Ho, 1969).

• AI was founded in part as a rebellion against the limitations of existing fields like control
theory and statistics, but now it is embracing those fields.

3

2 Intelligent Agents

• Agent perceives its environment through sensors and acts upon that environment through
actuators. Mathematically speaking, agent’s behavior is described by the agent function that
maps any given percept sequence to an action.

• Percept sequence is the complete history of everything the agent has ever perceived.

• The agent function is an abstract mathematical description; the agent program is a concrete
implementation, running within some physical system.

• As a general rule, it is better to design performance measures according to what one actually
wants in the environment, rather than according to how one thinks the agent should behave.

• What is rational at any given time depends on four things:

– The performance measure that defines the criterion of success.

– The agent’s prior knowledge of the environment.

– The actions that the agent can perform.

– The agent’s percept sequence to date.

• In designing an agent, the first step must always be to specify the task environment as fully
as possible. Task environment consists of Performance, Environment, Actuators, and
Sensors.

• Fully observable vs. partially observable. If an agent’s sensors give it access to the
complete state of the environment at each point in time, then we say that the task environment
is fully observable. A task environment is effectively fully observable if the sensors detect all
aspects that are relevant to the choice of action; relevance, in turn, depends on the performance
measure. An environment might be partially observable because of noisy and inaccurate sensors
or because parts of the state are simply missing from the sensor data.

• Single agent vs. multiagent. We have described how an entity may be viewed as an agent,
but we have not explained which entities must be viewed as agents. The key distinction is
whether B’s behavior is best described as maximizing a performance measure whose value
depends on agent A’s behavior.

• Deterministic vs. stochastic. If the next state of the environment is completely determined
by the current state and the action executed by the agent, then we say the environment is
deterministic; otherwise, it is stochastic. We say an environment is uncertain if it is not fully
observable or not deterministic. One final note: our use of the word ”stochastic” generally
implies that uncertainty about outcomes is quantified in terms of probabilities; a nondetermin-
istic environment is one in which actions are characterized by their possible outcomes, but no
probabilities are attached to them. Nondeterministic environment descriptions are usually as-
sociated with performance measures that require the agent to succeed for all possible outcomes
of its actions.

• Episodic vs. sequential. In an episodic task environment, the agent’s experience is divided
into atomic episodes. In each episode the agent receives a percept and then performs a single
action. Crucially, the next episode does not depend on the actions taken in previous episodes.
Many classification tasks are episodic. In sequential environments, on the other hand,
the current decision could affect all future decisions.

• Static vs. dynamic. If the environment can change while an agent is deliberating, then we
say the environment is dynamic for that agent; otherwise, it is static. Static environments are
easy to deal with because the agent need not keep looking at the world while it is deciding on
an action, nor need it worry about the passage of time. Dynamic environments, on the other

4

hand, are continuously asking the agent what it wants to do; if it hasn’t decided yet, that
counts as deciding to do nothing. If the environment itself does not change with the passage
of time but the agent’s performance score does, then we say the environment is semidynamic.

• Discrete vs. continuous. The discrete/continuous distinction applies to the state of the
environment, to the way time is handled, and to the percepts and actions of the agent.

• Known vs. unknown. Strictly speaking, this distinction refers not to the environment
itself but to the agent’s (or designer’s) state of knowledge about the ”laws of physics” of
the environment. In a known environment, the outcomes (or outcome probabilities if the
environment is stochastic) for all actions are given. Obviously, if the environment is unknown,
the agent will have to learn how it works in order to make good decisions. Note that the
distinction between known and unknown environments is not the same as the one between
fully and partially observable environments.

• Simple reflex agents select actions on the basis of the current percept, ignoring the rest of
the percept history. Simple reflex agents have the admirable property of being simple, but
they turn out to be of limited intelligence. Escape from infinite loops is possible if the agent
can randomize its actions.

• Model-based reflex agents. The most effective way to handle partial observability is for the
agent to keep track of the part of the world it can’t see now. That is, the agent should maintain
some sort of internal state that depends on the percept history and thereby reflects at least
some of the unobserved aspects of the current state. Updating this internal state information
as time goes by requires two kinds of knowledge to be encoded in the agent program. First,
we need some information about how the world evolves independently of the agent. Second,
we need some information about how the agent’s own actions affect the world.

• Goal-based agents. Knowing something about the current state of the environment is not
always enough to decide what to do. As well as a current state description, the agent needs
some sort of goal information that describes situations that are desirable. Notice that decision
making of this kind is fundamentally different from the condition– action rules described earlier,
in that it involves consideration of the future—both ”What will happen if I do such-and-such?”
and ”Will that make me happy?” In the reflex agent designs, this information is not explicitly
represented, because the built-in rules map directly from percepts to actions.

• Utility-based agents. Goals alone are not enough to generate high-quality behavior in most
environments. Goals just provide a crude binary distinction between ”happy” and ”unhappy”
states. A more general performance measure should allow a comparison of different world
states according to exactly how happy they would make the agent. An agent’s utility function
is essentially an internalization of the performance measure. If the internal utility function
and the external performance measure are in agreement, then an agent that chooses actions
to maximize its utility will be rational according to the external performance measure. In two
kinds of cases, goals are inadequate but a utility-based agent can still make rational decisions.
First, when there are conflicting goals, only some of which can be achieved, the utility function
specifies the appropriate tradeoff. Second, when there are several goals that the agent can aim
for, none of which can be achieved with certainty, utility provides a way in which the likelihood
of success can be weighed against the importance of the goals.

• Learning agents. A learning agent can be divided into four conceptual components. The
most important distinction is between the learning element, which is responsible for making
improvements, and the performance element, which is responsible for selecting external actions.
The performance element is what we have previously considered to be the entire agent: it takes
in percepts and decides on actions. The learning element uses feedback from the critic on how
the agent is doing and determines how the performance element should be modified to do better
in the future. The critic tells the learning element how well the agent is doing with respect to
a fixed performance standard. The critic is necessary because the percepts themselves provide

5

no indication of the agent’s success. Conceptually, one should think of it as being outside
the agent altogether because the agent must not modify it to fit its own behavior. The last
component of the learning agent is the problem generator. It is responsible for suggesting
actions that will lead to new and informative experiences. The point is that if the performance
element had its way, it would keep doing the actions that are best, given what it knows. But
if the agent is willing to explore a little and do some perhaps suboptimal actions in the short
run, it might discover much better actions for the long run. The problem generator’s job is to
suggest these exploratory actions.

6

3 Solving Problems By Searching

• This chapter describes one kind of goal-based agent called a problem-solving agent. Problem-
solving agents use atomic representations, that is, states of the world are considered as wholes,
with no internal structure visible to the problem-solving algorithms. Goal-based agents that
use more advanced factored or structured representations are usually called planning agents.

• Uninformed search algorithms—algorithms that are given no information about the
problem other than its definition.

• Informed search algorithms. do quite well given some guidance on where to look for
solutions.

• Notice that while the agent is executing the solution sequence it ignores its percepts when
choosing an action because it knows in advance what they will be. An agent that carries out
its plans with its eyes closed, so to speak, must be quite certain of what is going on. Control
theorists call this an open-loop system, because ignoring the percepts breaks the loop between
agent and environment.

• A problem can be defined formally by five components:

– The initial state that the agent starts in.

– A description of the possible actions available to the agent. Given a particular state s,
ACTIONS(s) returns the set of actions that can be executed in s.

– A description of what each action does; the formal name for this is the transition model,
specified by a function RESULT(s,a) that returns the state that results from doing action
a in state s. We also use the term successor to refer to any state reachable from a
given state by a single action. Together, the initial state, actions, and transition model
implicitly define the state space of the problem.

– The goal test, which determines whether a given state is a goal state.

– A path cost function that assigns a numeric cost to each path. The problem-solving agent
chooses a cost function that reflects its own performance measure. The step cost of taking
action a in state s to reach state s’ is denoted by c(s,a,s’).

– A solution to a problem is an action sequence that leads from the initial state to a goal
state. Solution quality is measured by the path cost function, and an optimal solution
has the lowest path cost among all solutions.

• The set of all leaf nodes available for expansion at any given point is called the frontier.

• Augment the TREE-SEARCH algorithm with a data structure called the explored set so that
the algorithm remembers every expanded node and avoid repeating them. Newly generated
nodes that match previously generated nodes—ones in the explored set or the frontier—can
be discarded instead of being added to the frontier.

• Search algorithms’ performance are evaluated in four ways:

– Completeness: Is the algorithm guaranteed to find a solution when there is one?

– Optimality: Does the strategy find the optimal solution?

– Time complexity: How long does it take to find a solution?

– Space complexity: How much memory is needed to perform the search?

• Uninformed Search. Strategies have no additional information about states beyond that
provided in the problem definition. All they can do is generate successors and distinguish a
goal state from a non-goal state. All search strategies are distinguished by the order in which
nodes are expanded. Strategies that know whether one non-goal state is ”more promising”
than another are called informed search or heuristic search strategies.

7

– Breadth-first search is a simple strategy in which the root node is expanded first, then
all the successors of the root node are expanded next, then their successors, and so on.
This is achieved very simply by using a FIFO queue for the frontier. The goal test is
applied to each node when it is generated rather than when it is selected for expansion.
BFS is optimal if the path cost is a nondecreasing function of the depth of the node. The
most common such scenario is that all actions have the same cost. Imagine searching
a uniform tree where every state has b successors. Also, suppose that the solution is
at depth d. Time and space complexities are O(bd). Lessons to be learnt from BFS:
First, the memory requirements are a bigger problem for breadth-first search than is the
execution time. Second lesson is that time is still a major factor.

– Uniform-cost search expands the node n with the lowest path cost g(n). This is done
by storing the frontier as a priority queue ordered by g. In addition to the ordering of the
queue by path cost, there are two other significant differences from breadth-first search.
The first is that the goal test is applied to a node when it is selected for expansion rather
than when it is first generated. The reason is that the first goal node that is generated
may be on a suboptimal path. The second difference is that a test is added in case a
better path is found to a node currently on the frontier. UCS is optimal in general.
Uniform-cost search does not care about the number of steps a path has, but only about
their total cost. Therefore, it will get stuck in an infinite loop if there is a path with an
infinite sequence of zero-cost actions—for example, a sequence of NoOp actions.

– Depth-first search always expands the deepest node in the current frontier of the search
tree. Whereas breadth-first-search uses a FIFO queue, depth-first search uses a LIFO
queue. DFS is not optimal. A depth-first tree search, on the other hand, may generate
all of the O(bm) nodes in the search tree, where m is the maximum depth of any node;
this can be much greater than the size of the state space. Note that m itself can be
much larger than d (the depth of the shallowest solution) and is infinite if the tree is
unbounded. For a state space with branching factor b and maximum depth m, depth-
first search requires storage of only O(bm) nodes, which is DFS’s advantage over BFS.
A variant of depth-first search called backtracking search uses still less memory. In
backtracking, only one successor is generated at a time rather than all successors; each
partially expanded node remembers which successor to generate next. In this way, only
O(m) memory is needed rather than O(bm).

– Depth-limited search nodes at depth l are treated as if they have no successors, which
solves the infinite-path problem. Its time complexity is O(bl) and its space complexity
is O(bl). Depth-first search can be viewed as a special case of depth-limited search with
l =∞.

– Iterative deepening DFS combines the benefits of depth-first and breadth-first search.
Like depth-first search, its memory requirements are modest: O(bd) to be precise. Like
breadth-first search, it is complete when the branching factor is finite and optimal when
the path cost is a nondecreasing function of the depth of the node. Iterative deepening
search may seem wasteful because states are generated multiple times. It turns out this
is not too costly. The reason is that in a search tree with the same (or nearly the same)
branching factor at each level, most of the nodes are in the bottom level, so it does
not matter much that the upper levels are generated multiple times, which gives a time
complexity of O(bd).

– Bidirectional search to run two simultaneous searches—one forward from the initial
state and the other backward from the goal—hoping that the two searches meet in the
middle. The motivation is that bd/2 + bd/2 is much less than bd. Bidirectional search is
implemented by replacing the goal test with a check to see whether the frontiers of the
two searches intersect; if they do, a solution has been found. The time complexity of
bidirectional search using breadth-first searches in both directions is O(bd/2). The space
complexity is also O(bd/2). We can reduce this by roughly half if one of the two searches
is done by iterative deepening, but at least one of the frontiers must be kept in memory

8

so that the intersection check can be done. This space requirement is the most significant
weakness of bidirectional search.

– Comparing uninformed search strategies

• Informed Search Strategies. Most best-first algorithms include as a component of f a
heuristic function, denoted h(n):

h(n) = estimated cost of the cheapest path from the state at node n to a goal state.

(Notice that h(n) takes a node as input, but, unlike g(n), it depends only on the state at that
node.) If n is a goal node, then h(n) = 0.

– Greedy best-first search tries to expand the node that is closest to the goal, on the
grounds that this is likely to lead to a solution quickly. Thus, it evaluates nodes by using
just the heuristic function; that is, f(n) = h(n). Greedy best-first tree search is also
incomplete even in a finite state space, much like depth-first search. The worst-case time
and space complexity for the tree version is O(bm), where m is the maximum depth of
the search space.

– A∗ search: Minimizing the total estimated solution cost. It evaluates nodes by
combining g(n), the cost to reach the node, and h(n), the cost to get from the node to
the goal:

f(n) = g(n) + h(n)

Since g(n) gives the path cost from the start node to node n, and h(n) is the estimated
cost of the cheapest path from n to the goal, we have

f(n) = estimated cost of the cheapest solution through n

Thus, if we are trying to find the cheapest solution, a reasonable thing to try first is the
node with the lowest value of g(n) + h(n). A∗ search is both complete and optimal.

– Conditions for optimality: Admissibility and consistency The first condition we
require for optimality is that h(n) be an admissible heuristic. An admissible heuristic is
one that never overestimates the cost to reach the goal. Because g(n) is the actual cost
to reach n along the current path, and f(n) = g(n) + h(n), we have as an immediate
consequence that f(n) never overestimates the true cost of a solution along the current
path through n. Admissible heuristics are by nature optimistic because they think the
cost of solving the problem is less than it actually is. A second, slightly stronger condition
called consistency (or sometimes monotonicity) is required only for applications of A∗ to
graph search. A heuristic h(n) is consistent if, for every node n and every successor n′ of
n generated by any action a, the estimated cost of reaching the goal from n is no greater
than the step cost of getting to n′ plus the estimated cost of reaching the goal from n′:

h(n) ≤ c(n, a, n′) + h(n′)

9

For an admissible heuristic, the inequality makes perfect sense: if there were a route from
n to G via n′ that was cheaper than h(n), that would violate the property that h(n) is a
lower bound on the cost to reach G.

– Optimality of A* the tree-search version of A∗ is optimal if h(n) is admissible, while
the graph-search version is optimal if h(n) is consistent. It follows that the sequence of
nodes expanded by A∗ using GRAPH-SEARCH is in nondecreasing order of f(n). Hence,
the first goal node selected for expansion must be an optimal solution because f is the
true cost for goal nodes (which have h = 0) and all later goal nodes will be at least as
expensive. If C∗ is the cost of the optimal solution path, then we can say the following:

∗ A∗ expands all nodes with f(n) < C∗
∗ A∗ might then expand some of the nodes right on the ”goal contour” (where f(n) =
C∗) before selecting a goal node.

∗ A∗ expands no nodes with f(n) > C∗
No other optimal algorithm is guaranteed to expand fewer nodes than A∗. The catch
is that, for most problems, the number of states within the goal contour search space
is still exponential in the length of the solution. The complexity of A∗ often makes it
impractical to insist on finding an optimal solution. One can use variants of A∗ that
find suboptimal solutions quickly, or one can sometimes design heuristics that are more
accurate but not strictly admissible. In any case, the use of a good heuristic still provides
enormous savings compared to the use of an uninformed search.

– Memory-bounded heuristic search. The simplest way to reduce memory require-
ments for A∗ is to adapt the idea of iterative deepening to the heuristic search context,
resulting in the iterative-deepening A∗ (IDA*). Recursive best-first search (RBFS) is a
simple recursive algorithm that attempts to mimic the operation of standard best-first
search, but using only linear space. RBFS is somewhat more efficient than IDA*, but
still suffers from excessive node regeneration. Like A∗ tree search, RBFS is an optimal
algorithm if the heuristic function h(n) is admissible. Its space complexity is linear in
the depth of the deepest optimal solution, but its time complexity is rather difficult to
characterize: it depends both on the accuracy of the heuristic function and on how often
the best path changes as nodes are expanded. IDA* and RBFS suffer from using too
little memory. SMA* proceeds just like A∗, expanding the best leaf until memory is full.
At this point, it cannot add a new node to the search tree without dropping an old one.
SMA* always drops the worst leaf node—the one with the highest f-value. Like RBFS,
SMA* then backs up the value of the forgotten node to its parent. In this way, the ances-
tor of a forgotten subtree knows the quality of the best path in that subtree. With this
information, SMA* regenerates the subtree only when all other paths have been shown
to look worse than the path it has forgotten. SMA* is complete if there is any reachable
solution—that is, if d, the depth of the shallowest goal node, is less than the memory
size (expressed in nodes). It is optimal if any optimal solution is reachable; otherwise, it
returns the best reachable solution.

10

4 Beyond Classical Search

• Section 3 addressed a single category of problems: observable, deterministic, known environ-
ments where the solution is a sequence of actions. In this section, when these assumptions are
relaxed are covered.

• Local search two key advantages: (1) they use very little memory—usually a constant amount;
and (2) they can often find reasonable solutions in large or infinite (continuous) state spaces
for which systematic algorithms are unsuitable.

• Local search algorithms are useful for solving pure optimization problems, in which the aim is
to find the best state according to an objective function.

• State-space landscape. A landscape has both ”location” (defined by the state) and ”eleva-
tion” (defined by the value of the heuristic cost function or objective function). If elevation
corresponds to cost, then the aim is to find the lowest valley—a global minimum; if eleva-
tion corresponds to an objective function, then the aim is to find the highest peak—a global
maximum.

• A complete local search algorithm always finds a goal if one exists; an optimal algorithm always
finds a global minimum/maximum.

• Hill-climbing search. It is simply a loop that continually moves in the direction of increasing
value—that is, uphill. It terminates when it reaches a ”peak” where no neighbor has a higher
value. Hill climbing does not look ahead beyond the immediate neighbors of the current state.
Hill climbing is sometimes called greedy local search because it grabs a good neighbor state
without thinking ahead about where to go next. It often gets stuck for the following reasons:

– Local maxima.

– Ridges.

– Plateaux.

• Stochastic hill climbing chooses at random from among the uphill moves; the probability of
selection can vary with the steepness of the uphill move. This usually converges more slowly
than steepest ascent, but in some state landscapes, it finds better solutions.

• First-choice hill climbing implements stochastic hill climbing by generating successors ran-
domly until one is generated that is better than the current state. This is a good strategy
when a state has many (e.g., thousands) of successors.

• Random-restart hill climbing conducts a series of hill-climbing searches from randomly gen-
erated initial states, until a goal is found. It is trivially complete with probability approaching
1, because it will eventually generate a goal state as the initial state. If each hill-climbing
search has a probability p of success, then the expected number of restarts required is 1/p.

• Simulated annealing solution is to start by shaking hard (i.e., at a high temperature) and
then gradually reduce the intensity of the shaking (i.e., lower the temperature). The innermost
loop of the simulated-annealing algorithm is quite similar to hill climbing. Instead of picking
the best move, however, it picks a random move. If the move improves the situation, it is
always accepted. Otherwise, the algorithm accepts the move with some probability less than
1. The probability decreases exponentially with the ”badness” of the move—the amount ∆E
by which the evaluation is worsened. The probability also decreases as the ”temperature” T
goes down: ”bad” moves are more likely to be allowed at the start when T is high, and they
become more unlikely as T decreases. If the schedule lowers T slowly enough, the algorithm
will find a global optimum with probability approaching 1.

11

• Local beam search keeps track of k states rather than just one. It begins with k randomly
generated states. At each step, all the successors of all k states are generated. If any one is
a goal, the algorithm halts. Otherwise, it selects the k best successors from the complete list
and repeats. In a local beam search, useful information is passed among the parallel search
threads.

• Genetic algorithm (or GA) is a variant of stochastic beam search in which successor states
are generated by combining two parent states rather than by modifying a single state. GAs
begin with a set of k randomly generated states, called the population. Each state is rated by
the objective function, or (in GA terminology) the fitness function. A fitness function should
return higher values for better states. Then two pairs are selected at random for reproduction,
in accordance with the probability in previous step. For each pair to be mated, a crossover
point is chosen randomly from the positions in the string. Then offspring themselves are
created by crossing over the parent strings at the crossover point. It is often the case that
the population is quite diverse early on in the process, so crossover (like simulated annealing)
frequently takes large steps in the state space early in the search process and smaller steps
later on when most individuals are quite similar. Finally each location is subject to random
mutation with a small independent probability.

• An optimization problem is constrained if solutions must satisfy some hard constraints on the
values of the variables.

• Searching with Nondeterministic Actions. Solutions for nondeterministic problems can
contain nested if–then–else statements; this means that they are trees rather than sequences.
In a deterministic environment, the only branching is introduced by the agent’s own choices
in each state. We call these nodes OR nodes. In a nondeterministic environment, branching
is also introduced by the environment’s choice of outcome for each action. We call these nodes
AND nodes. A solution for an AND–OR search problem is a subtree that (1) has a goal node
at every leaf, (2) specifies one action at each of its OR nodes, and (3) includes every outcome
branch at each of its AND nodes.

• Searching with Partial Observations. To solve sensorless problems, we search in the
space of belief states rather than physical states. Suppose the underlying physical problem P
is defined by ACTIONSP , RESULTP , GOAL−TESTP , and STEP −COSTP . Then we
can define the corresponding sensorless problem as follows:

– Belief states: The entire belief-state space contains every possible set of physical states.
If P has N states, then the sensorless problem has up to 2N states, although many may
be unreachable from the initial state.

– Initial state: Typically the set of all states in P , although in some cases the agent will
have more knowledge than this.

– Actions: This is slightly tricky. Suppose the agent is in belief state b = s1, s2, but
ACTIONSP (s1) 6= ACTIONSP (s2); then the agent is unsure of which actions are legal.
It can either take and union of the actions or the intersection.

– Transition model: The agent doesn’t know which state in the belief state is the right one;
so as far as it knows, it might get to any of the states resulting from applying the action
to one of the physical states in the belief state.

– Goal test: The agent wants a plan that is sure to work, which means that a belief state
satisfies the goal only if all the physical states in it satisfy GOAL− TESTP .

– Path cost: This is also tricky. If the same action can have different costs in different
states, then the cost of taking an action in a given belief state could be one of several
values.

The preceding definitions enable the automatic construction of the belief-state problem formu-
lation from the definition of the underlying physical problem. Once this is done, we can apply
any of the search algorithms.

12

• Online search. Online search is a good idea in dynamic or semidynamic domains—domains
where there is a penalty for sitting around and computing too long. Online search is a necessary
idea for unknown environments, where the agent does not know what states exist or what its
actions do. In this state of ignorance, the agent faces an exploration problem and must use its
actions as experiments in order to learn enough to make deliberation worthwhile. We stipulate
that the agent knows only the following:

– ACTIONS(s), which returns a list of actions allowed in state s

– The step-cost function c(s, a, s′)—note that this cannot be used until the agent knows
that s′ is the outcome

– GOAL− TEST (s)

Note in particular that the agent cannot determine RESULT (s, a) except by actually being in
s and doing a. Typically, the agent’s objective is to reach a goal state while minimizing cost.
The cost is the total path cost of the path that the agent actually travels. It is common to
compare this cost with the path cost of the path the agent would follow if it knew the search
space in advance—that is, the actual shortest path. In the language of online algorithms, this
is called the competitive ratio; we would like it to be as small as possible. No algorithm can
avoid dead ends in all state spaces. No bounded competitive ratio can be guaranteed if there
are paths of unbounded cost.

13

5 Adversarial Search

• A game can be formally defined as a kind of search problem with the following elements:

– S0: The initial state, which specifies how the game is set up at the start.

– PLAY ER(s): Defines which player has the move in a state.

– ACTIONS(s): Returns the set of legal moves in a state.

– RESULT (s, a): The transition model, which defines the result of a move.

– TERMINAL−TEST (s): A terminal test, which is true when the game is over and false
otherwise. States where the game has ended are called terminal states.

– UTILITY (s, p): A utility function (also called an objective function or payoff function),
defines the final numeric value for a game that ends in terminal state s for a player p.
In chess, the outcome is a win, loss, or draw, with values +1, 0, or 1/2 . Some games
have a wider variety of possible outcomes. A zero-sum game is (confusingly) defined
as one where the total payoff to all players is the same for every instance of the game.
Chess is zero-sum because every game has payoff of either 0 + 1, 1 + 0 or 1/2 + 1/2.
”Constant-sum” would have been a better term, but zero-sum is traditional and makes
sense if you imagine each player is charged an entry fee of 1/2.

• Given a choice, MAX prefers to move to a state of maximum value, whereas MIN prefers a
state of minimum value. The minimax algorithm performs a complete depth-first exploration
of the game tree. If the maximum depth of the tree is m and there are b legal moves at each
point, then the time complexity of the minimax algorithm is O(bm). The space complexity
is O(bm) for an algorithm that generates all actions at once, or O(m) for an algorithm that
generates actions one at a time.

• Alpha-Beta Pruning. The problem with minimax search is that the number of game states
it has to examine is exponential in the depth of the tree. When applied to a standard minimax
tree, it returns the same move as minimax would, but prunes away branches that cannot
possibly influence the final decision. Minimax search is depth-first, so at any one time we just
have to consider the nodes along a single path in the tree. Alpha–beta pruning gets its name
from the following two parameters that describe bounds on the backed-up values that appear
anywhere along the path:

– α = the value of the best (i.e., highest-value) choice we have found so far at any choice
point along the path for MAX.

– β = the value of the best (i.e., lowest-value) choice we have found so far at any choice
point along the path for MIN.

The effectiveness of alpha–beta pruning is highly dependent on the order in which the states are
examined. This suggests that it might be worthwhile to try to examine first the successors that
are likely to be best. If this can be done, then it turns out that alpha–beta needs to examine
only O(bm/2) nodes to pick the best move, instead of O(bm) for minimax. Alpha–beta can
solve a tree roughly twice as deep as minimax in the same amount of time. If successors are
examined in random order rather than best-first, the total number of nodes examined will be
roughly O(b3m/4) for moderate b.

• Evaluation functions should order the terminal states in the same way as the true utility
function: states that are wins must evaluate better than draws, which in turn must be better
than losses. Otherwise, an agent using the evaluation function might err even if it can see
ahead all the way to the end of the game. Second, the computation must not take too long!
(The whole point is to search faster.) Third, for nonterminal states, the evaluation function
should be strongly correlated with the actual chances of winning. Most evaluation functions
work by calculating various features of the state. The features, taken together, define various
categories or equivalence classes of states: the states in each category have the same values

14

for all the features. The evaluation function should be applied only to positions that are
quiescent—that is, unlikely to exhibit wild swings in value in the near future.

• Stochastic games. Positions do not have definite minimax values. Instead, we can only
calculate the expected value of a position: the average over all possible outcomes of the chance
nodes. As with minimax, the obvious approximation to make with expectiminimax is to cut the
search off at some point and apply an evaluation function to each leaf. One might think that
evaluation functions for games such as backgammon should be just like evaluation functions
for chess—they just need to give higher scores to better positions. But in fact, the presence of
chance nodes means that one has to be more careful about what the evaluation values mean.
If the program knew in advance all the dice rolls that would occur for the rest of the game,
solving a game with dice would be just like solving a game without dice, which minimax does
in O(bm) time, where b is the branching factor and m is the maximum depth of the game
tree. Because expectiminimax is also considering all the possible dice-roll sequences, it will
take O(bmnm), where n is the number of distinct rolls.

• Partially observable games. Given a current belief state, one may ask, ”Can I win the
game?” For a partially observable game, the notion of a strategy is altered; instead of specifying
a move to make for each possible move the opponent might make, we need a move for every
possible percept sequence that might be received. In addition to guaranteed checkmates,
Kriegspiel admits an entirely new concept that makes no sense in fully observable games:
probabilistic checkmate. Such checkmates are still required to work in every board state in
the belief state; they are probabilistic with respect to randomization of the winning player’s
moves.

15

6 Constraint Satisfaction Problems

• A constraint satisfaction problem consists of three components, X, D, and C:

– X is a set of variables, {X1, ..., Xn}.
– D is a set of domains, {D1, ..., Dn}, one for each variable.

– C is a set of constraints that specify allowable combinations of values.

Each domain Di consists of a set of allowable values, {v1, ..., vk} for variable Xi. Each con-
straint Ci consists of a pair < scope, rel >, where scope is a tuple of variables that participate
in the constraint and rel is a relation that defines the values that those variables can take on. A
relation can be represented as an explicit list of all tuples of values that satisfy the constraint,
or as an abstract relation that supports two operations: testing if a tuple is a member of the
relation and enumerating the members of the relation.

• To solve a CSP, we need to define a state space and the notion of a solution. Each state in a
CSP is defined by an assignment of values to some or all of the variables, {Xi = vi, Xj = vj , ...}.
An assignment that does not violate any constraints is called a consistent or legal assignment.
A complete assignment is one in which every variable is assigned, and a solution to a CSP is a
consistent, complete assignment. A partial assignment is one that assigns values to only some
of the variables.

• Why formulate a problem as a CSP? One reason is that the CSPs yield a natural representation
for a wide variety of problems; if you already have a CSP-solving system, it is often easier to
solve a problem using it than to design a custom solution using another search technique. In
addition, CSP solvers can be faster than state-space searchers because the CSP solver can
quickly eliminate large swatches of the search space. With CSPs, once we find out that a
partial assignment is not a solution, we can immediately discard further refinements of the
partial assignment. Furthermore, we can see why the assignment is not a solution—we see
which variables violate a constraint—so we can focus attention on the variables that matter.
As a result, many problems that are intractable for regular state-space search can be solved
quickly when formulated as a CSP.

• Constraint hypergraph. constraints can be represented in a constraint hypergraph. A
hypergraph consists of ordinary nodes (the circles in the figure) and hypernodes (the squares),
which represent n-ary constraints.

• Preference constraints indicates which solutions are preferred, such problems are called
constraint optimization problem, or COP.

• Constraint propagation. In regular state-space search, an algorithm can do only one thing:
search. In CSPs there is a choice: an algorithm can search (choose a new variable assignment
from several possibilities) or do a specific type of inference called constraint propagation: using
the constraints to reduce the number of legal values for a variable, which in turn can reduce
the legal values for another variable, and so on.

• Node consistency. A single variable (corresponding to a node in the CSP network) is node-
consistent if all the values in the variable’s domain satisfy the variable’s unary constraints.

• Arc consistency. A variable in a CSP is arc-consistent if every value in its domain satisfies
the variable’s binary constraints. More formally, Xi is arc-consistent with respect to another
variable Xj if for every value in the current domain Di there is some value in the domain Dj

that satisfies the binary constraint on the arc (Xi, Xj).

• Path consistency. A two-variable set {Xi, Xj} is path-consistent with respect to a third vari-
able Xm if, for every assignment {Xi = a,Xj = b} consistent with the constraints on {Xi, Xj},
there is an assignment to Xm that satisfies the constraints on {Xi, Xm} and {Xm, Xj}. This

16

is called path consistency because one can think of it as looking at a path from Xi to Xj with
Xm in the middle.

• K-consistency. A CSP is k-consistent if, for any set of k− 1 variables and for any consistent
assignment to those variables, a consistent value can always be assigned to any kth variable.
1-consistency says that, given the empty set, we can make any set of one variable consistent:
this is what we called node consistency. 2-consistency is the same as arc consistency. For
binary constraint networks, 3-consistency is the same as path consistency.

• Commutativity. A problem is commutative if the order of application of any given set of
actions has no effect on the outcome. CSPs are commutative because when assigning values to
variables, we reach the same partial assignment regardless of order. Therefore, we need only
consider a single variable at each node in the search tree.

• Backtracking search. The term backtracking search is used for a depth-first search that
chooses values for one variable at a time and backtracks when a variable has no legal values
left to assign. It repeatedly chooses an unassigned variable, and then tries all values in the
domain of that variable in turn, trying to find a solution. If an inconsistency is detected, then
BACKTRACK returns failure, causing the previous call to try another value.

• Variable and value ordering. Intuitive idea—choosing the variable with the fewest ”legal”
values—is called the minimum-remaining-values (MRV) heuristic. The MRV heuristic doesn’t
help at all in choosing the first region to color in Australia, because initially every region
has three legal colors. In this case, the degree heuristic comes in handy. It attempts to
reduce the branching factor on future choices by selecting the variable that is involved in the
largest number of constraints on other unassigned variables. Once a variable has been selected,
the algorithm must decide on the order in which to examine its values. For this, the least-
constraining-value heuristic can be effective in some cases. It prefers the value that rules out
the fewest choices for the neighboring variables in the constraint graph.

• Local search for CSPs. Local search algorithms turn out to be effective in solving many
CSPs. They use a complete-state formulation: the initial state assigns a value to every variable,
and the search changes the value of one variable at a time. In choosing a new value for a
variable, the most obvious heuristic is to select the value that results in the minimum number
of conflicts with other variables—the min-conflicts heuristic. Roughly speaking, n-queens is
easy for local search because solutions are densely distributed throughout the state space.

17

7 Logical Agents

• Knowledge base. A knowledge base is a set of sentences. Each sentence is expressed in a
language called a knowledge representation language and represents some assertion about the
world. Sometimes we dignify a sentence with the name axiom, when the sentence is taken as
given without being derived from other sentences. There must be a way to add new sentences
to the knowledge base and a way to query what is known. The standard names for these
operations are TELL and ASK, respectively. Both operations may involve inference—that
is, deriving new sentences from old. Inference must obey the requirement that when one
ASKs a question of the knowledge base, the answer should follow from what has been told (or
TELLed) to the knowledge base previously. The agent maintains a knowledge base, KB, which
may initially contain some background knowledge. Each time the agent program is called, it
does three things. First, it TELLs the knowledge base what it perceives. Second, it ASKs
the knowledge base what action it should perform. In the process of answering this query,
extensive reasoning may be done about the current state of the world, about the outcomes of
possible action sequences, and so on. Third, the agent program TELLs the knowledge base
which action was chosen, and the agent executes the action.

• The Wumpus world. It is discrete, static, and single-agent. It is sequential, because rewards
may come only after many actions are taken. It is partially observable, because some aspects
of the state are not directly perceivable: the agent’s location, the wumpus’s state of health,
and the availability of an arrow. As for the locations of the pits and the wumpus: we could
treat them as unobserved parts of the state that happen to be immutable—in which case, the
transition model for the environment is completely known. The agent’s initial knowledge base
contains the rules of the environment. Note that in each case for which the agent draws a
conclusion from the available information, that conclusion is guaranteed to be correct if the
available information is correct. This is a fundamental property of logical reasoning.

• Logic. Knowledge bases consist of sentences. These sentences are expressed according to the
syntax of the representation language, which specifies all the sentences that are well formed.
A logic must also define the semantics or meaning of sentences. The semantics defines the
truth of each sentence with respect to each possible world. When we need to be precise, we
use the term model in place of ”possible world.” Whereas possible worlds might be thought
of as (potentially) real environments that the agent might or might not be in, models are
mathematical abstractions, each of which simply fixes the truth or falsehood of every relevant
sentence. If a sentence α is true in model m, we say that m satisfies α or sometimes m is a
model of α. We use the notation M(α) to mean the set of all models of α. Formal definition
of entailment is this: α |= β if and only if, in every model in which α is true, β is also true.
Using the notation just introduced, we can write:

α |= β iff M(α) ⊆M(β)

Model checking enumerates all possible models to check that α is true in all models in which
KB is true, that is, that M(KB) ⊆ M(α). If an inference algorithm i can derive α from KB,
we write:

KB `i α

which is pronounced ”α is derived from KB by i” or ”i derives α from KB”. An inference
algorithm that derives only entailed sentences is called sound or truth-preserving. The property
of completeness is also desirable: an inference algorithm is complete if it can derive any sentence
that is entailed. If KB is true in the real world, then any sentence α derived from KB by a sound
inference procedure is also true in the real world. The final issue to consider is grounding—the
connection between logical reasoning processes and the real environment in which the agent
exists. In particular, how do we know that KB is true in the real world? (After all, KB is just
”syntax” inside the agent’s head.)

18

• Propositional Logic: A Very Simple Logic. The syntax of propositional logic defines the
allowable sentences. The atomic sentences consist of a single proposition symbol. Complex
sentences are constructed from simpler sentences, using parentheses and logical connectives.
There are five connectives in common use:

– ¬ (not). A sentence such as ¬W1 is called the negation of W1. A literal is either an
atomic sentence (a positive literal) or a negated atomic sentence (a negative literal).

– ∧ (and). A sentence whose main connective is ∧, such as W1∧P1, is called a conjunction.

– ∨ (or). A sentence using ∨, such as (W1 ∧ P1) ∨W2, is a disjunction of the disjuncts.

– =⇒ (implies). A sentence such as (W1 ∧ P1) =⇒ W2 is called an implication (or
conditional). Its premise or antecedent is (W1 ∧ P1), and its conclusion or consequent is
W2. Implications are also known as rules or if–then statements.

– ⇐⇒ (if and only if). The sentence W1 ⇐⇒ W2 is a biconditional.

The semantics for propositional logic must specify how to compute the truth value of any
sentence, given a model. We need to specify how to compute the truth of atomic sentences
and how to compute the truth of sentences formed with each of the five connectives. Atomic
sentences are easy:

– True is true in every model and False is false in every model.

For complex sentences, we have five rules:

– ¬P is true iff P is false in m.

– P ∧Q is true iff both P and Q are true in m.

– P ∨Q is true iff either P or Q is true in m.

– P =⇒ Q is true unless P is true and Q is false in m.

– P ⇐⇒ Q is true iff P and Q are both true or both false in m.

• Propositional Theorem Proving. Logical equivalence: two sentences α and β are logically
equivalent if they are true in the same set of models. We write this as α ≡ β. We can also say
two sentences are logically equivalent if each of them entails the other. A sentence is valid if
it is true in all models. A sentence is satisfiable if it is true in, or satisfied by, some model.

• Inference and proofs. The best-known rule is called Modus Ponens: whenever any sen-
tences of the form α =⇒ β and α are given, then the sentence β can be inferred. And-
Elimination: from α ∧ β, α can be inferred. One final property of logical systems is mono-

19

tonicity, which says that the set of entailed sentences can only increase as information is added
to the knowledge base.

20

8 First-Order Logic.

• Compositionality. In a compositional language, the meaning of a sentence is a function of
the meaning of its parts. For example, the meaning of S1 ∧ S2 is related to the meanings of
S1 and S2.

• From the viewpoint of formal logic, representing the same knowledge in two different ways
makes absolutely no difference; the same facts will be derivable from either representation. In
practice, however, one representation might require fewer steps to derive a conclusion, meaning
that a reasoner with limited resources could get to the conclusion using one representation but
not the other.

• The primary difference between propositional and first-order logic lies in the ontological com-
mitment made by each language—that is, what it assumes about the nature of reality. Mathe-
matically, this commitment is expressed through the nature of the formal models with respect
to which the truth of sentences is defined. For example, propositional logic assumes that there
are facts that either hold or do not hold in the world. Each fact can be in one of two states:
true or false, and each model assigns true or false to each proposition symbol. First-order logic
assumes more; namely, that the world consists of objects with certain relations among them
that do or do not hold. The formal models are correspondingly more complicated than those
for propositional logic.

• Models for first-order logic are much more interesting. First, they have objects in them!
The domain of a model is the set of objects or domain elements it contains. The domain is
required to be nonempty—every possible world must contain at least one object. Mathemati-
cally speaking, it doesn’t matter what these objects are—all that matters is how many there
are in each particular model.

• Symbols and interpretations. The basic syntactic elements of first-order logic are the
symbols that stand for objects, relations, and functions. The symbols, therefore, come in three
kinds: constant symbols, which stand for objects; predicate symbols, which stand for relations;
and function symbols, which stand for functions. In addition to its objects, relations, and
functions, each model includes an interpretation that specifies exactly which objects, relations
and functions are referred to by the constant, predicate, and function symbols.

• Terms are logical expressions that refer to objects. Constant symbols are therefore terms, but
it is not always convenient to have a distinct symbol to name every object.

• Atomic sentences are formed from a predicate symbol optionally followed by a parenthesized
list of terms. An atomic sentence is true in a given model if the relation referred to by the
predicate symbol holds among the objects referred to by the arguments.

• Quantifiers. First-order logic contains two standard quantifiers, called universal, ∀ and exis-
tential, ∃. Connections between the two are as follows:

∀x¬Likes(x, soup) is equivalent to ¬∃Likes(x, soup)

21

9 Inference in First-Order Logic

• Modus ponens is a rule of inference. It can be summarized as ”P implies Q and P is asserted
to be true, therefore Q must be true”.

• A lifted version of Modus Ponens uses unification to provide a natural and powerful inference
rule, generalized Modus Ponens. The forward-chaining and backward-chaining algorithms ap-
ply this rule to sets of definite clauses. Generalized Modus Ponens is complete for definite
clauses, although the entailment problem is semidecidable. For Datalog knowledge bases con-
sisting of function-free definite clauses, entailment is decidable. Forward chaining is used in
deductive databases, where it can be combined with relational database operations. It is also
used in production systems, which perform efficient updates with very large rule sets. Forward
chaining is complete for Datalog and runs in polynomial time. Backward chaining is used in
logic programming systems, which employ sophisticated compiler technology to provide very
fast inference. Backward chaining suffers from redundant inferences and infinite loops; these
can be alleviated by memoization. Prolog, unlike first-order logic, uses a closed world with the
unique names assumption and negation as failure. These make Prolog a more practical pro-
gramming language, but bring it further from pure logic. The generalized resolution inference
rule provides a complete proof system for first-order logic, using knowledge bases in conjunc-
tive normal form. Several strategies exist for reducing the search space of a resolution system
without compromising completeness. One of the most important issues is dealing with equal-
ity; we showed how demodulation and paramodulation can be used. Efficient resolution-based
theorem provers have been used to prove interesting mathematical theorems and to verify and
synthesize software and hardware.

22

10 Classical Planning

• Planning is devising a plan of action to achieve one’s goals and is a critical part of AI.

• We say that action a is applicable in state s if the preconditions are satisfied by s. The result
of executing action a in state s is defined as a state s′ which is represented by the set of fluents
formed by starting with s. A specific problem within the domain is defined with the addition
of an initial state and a goal. The initial state is a conjunction of ground atoms. The goal
is just like a precondition: a conjunction of literals (positive or negative) that may contain
variables. Now we have defined planning as a search problem: we have an initial state, an
ACTIONS function, a RESULT function, and a goal test.

• PlanSAT is the question of whether there exists any plan that solves a planning problem.
Bounded PlanSAT asks whether there is a solution of length k or less; this can be used to
find an optimal plan. The first result is that both decision problems are decidable for classical
planning.

• Now that we have shown how a planning problem maps into a search problem, we can solve
planning problems with any of the heuristic search algorithms from Chapter 3 or a local search
algorithm from Chapter 4 (provided we keep track of the actions used to reach the goal).

• Why forward-search assumed to be inefficient? First, forward search is prone to exploring
irrelevant actions. Second, planning problems often have large state spaces.

• Neither forward nor backward search is efficient without a good heuristic function. An admis-
sible heuristic can be derived by defining a relaxed problem that is easier to solve. The exact
cost of a solution to this easier problem then becomes the heuristic for the original problem.

• Think of a search problem as a graph where the nodes are states and the edges are actions. The
problem is to find a path connecting the initial state to a goal state. There are two ways we
can relax this problem to make it easier: by adding more edges to the graph, making it strictly
easier to find a path, or by grouping multiple nodes together (state abstraction), forming an
abstraction of the state space that has fewer states, and thus is easier to search.

• A key idea in defining heuristics is decomposition: dividing a problem into parts, solving each
part independently, and then combining the parts. The subgoal independence assumption is
that the cost of solving a conjunction of subgoals is approximated by the sum of the costs of
solving each subgoal independently.

• Planning graphs. A planning problem asks if we can reach a goal state from the initial
state. Suppose we are given a tree of all possible actions from the initial state to successor
states, and their successors, and so on. If we indexed this tree appropriately, we could answer
the planning question ”can we reach state G from state S0” immediately, just by looking it
up. The planning graph can’t answer definitively whether G is reachable from S0, but it can
estimate how many steps it takes to reach G. The estimate is always correct when it reports
the goal is not reachable, and it never overestimates the number of steps, so it is an admissible
heuristic. A planning graph is polynomial in the size of the planning problem.

• A planning graph, once constructed, is a rich source of information about the problem. First,
if any goal literal fails to appear in the final level of the graph, then the problem is unsolvable.
Second, we can estimate the cost of achieving any goal literal gi from state s as the level at
which gi first appears in the planning graph constructed from initial state s. It’s called the
level cost of gi.

• GraphPlan. The name graphplan is due to the use of a novel planning graph, to reduce
the amount of search needed to find the solution from straightforward exploration of the state
space graph. In the state space graph:

23

– the nodes are possible states,

– and the edges indicate reachability through a certain action.

On the contrary, in Graphplan’s planning graph:

– the nodes are actions and atomic facts, arranged into alternate levels,

– and the edges are of two kinds:

∗ from an atomic fact to the actions for which it is a condition,

∗ from an action to the atomic facts it makes true or false.

the first level contains true atomic facts identifying the initial state.

Lists of incompatible facts that cannot be true at the same time and incompatible actions that
cannot be executed together are also maintained. The algorithm then iteratively extends the
planning graph, proving that there are no solutions of length l − 1 before looking for plans of
length l by backward chaining: supposing the goals are true, Graphplan looks for the actions
and previous states from which the goals can be reached, pruning as many of them as possible
thanks to incompatibility information.

• Analysis of planning approaches. Planning combines the two major areas of AI we have
covered so far: search and logic. A planner can be seen either as a program that searches for
a solution or as one that (constructively) proves the existence of a solution. Sometimes it is
possible to solve a problem efficiently by recognizing that negative interactions can be ruled
out. We say that a problem has serializable subgoals if there exists an order of subgoals such
that the planner can achieve them in that order without having to undo any of the previously
achieved subgoals.

24

11 Planning and Acting in the Real World.

• The classical planning representation talks about what to do, and in what order, but the
representation cannot talk about time: how long an action takes and when it occurs. We divide
the overall problem into a planning phase in which actions are selected, with some ordering
constraints, to meet the goals of the problem, and a later scheduling phase, in which temporal
information is added to the plan to ensure that it meets resource and deadline constraints.

• Solving scheduling problems. The critical path is that path whose total duration is longest;
the path is “critical” because it determines the duration of the entire plan—shortening other
paths doesn’t shorten the plan as a whole, but delaying the start of any action on the critical
path slows down the whole plan. Actions that are off the critical path have a window of time
in which they can be executed.Mathematically speaking, critical-path problems are easy to
solve because they are defined as a conjunction of linear inequalities on the start and end
times. When we introduce resource constraints, the resulting constraints on start and end
times become more complicated. Up to this point, we have assumed that the set of actions
and ordering constraints is fixed. Under these assumptions, every scheduling problem can
be solved by a nonoverlapping sequence that avoids all resource conflicts, provided that each
action is feasible by itself.

• Hierarchical planning. The basic formalism we adopt to understand hierarchical decom-
position comes from the area of hierarchical task networks or HTN planning. As in classical
planning (Chapter 10), we assume full observability and determinism and the availability of a
set of actions, now called primitive actions, with standard precondition–effect schemas. The
key additional concept is the high-level action or HLA. Each HLA has one or more possible
refinements, into a sequence of actions, each of which may be an HLA or a primitive action
(which has no refinements by definition). An HLA refinement that contains only primitive
actions is called an implementation of the HLA. An implementation of a high-level plan (a se-
quence of HLAs) is the concatenation of implementations of each HLA in the sequence. Given
the precondition–effect definitions of each primitive action, it is straightforward to determine
whether any given implementation of a high-level plan achieves the goal. We can say, then,
that a high-level plan achieves the goal from a given state if at least one of its implementations
achieves the goal from that state. The “at least one” in this definition is crucial—not all im-
plementations need to achieve the goal, because the agent gets to decide which implementation
it will execute. HTN planning is often formulated with a single “top level” action called Act,
where the aim is to find an implementation of Act that achieves the goal. The approach leads
to a simple algorithm: repeatedly choose an HLA in the current plan and replace it with one
of its refinements, until the plan achieves the goal. The hierarchical search algorithm refines
HLAs all the way to primitive action sequences to determine if a plan is workable. The notion
of reachable sets yields a straightforward algorithm: search among high-level plans, looking
for one whose reachable set intersects the goal; once that happens, the algorithm can commit
to that abstract plan, knowing that it works, and focus on refining the plan further.

• Planning and acting in nondeterministic domains. Planners deal with factored repre-
sentations rather than atomic representations. This affects the way we represent the agent’s
capability for action and observation and the way we represent belief states—the sets of possible
physical states the agent might be in—for unobservable and partially observable environments.
To solve a partially observable problem, the agent will have to reason about the percepts it
will obtain when it is executing the plan. The percept will be supplied by the agent’s sensors
when it is actually acting, but when it is planning it will need a model of its sensors. For a
fully observable environment, we would have a Percept axiom with no preconditions for each
fluent. A sensorless agent, on the other hand, has no Percept axioms at all. Note that even
a sensorless agent can solve the painting problem. A contingent planning agent with sensors
can generate a better plan. Finally, an online planning agent might generate a contingent
plan with fewer branches at first and deal with problems when they arise by replanning. It

25

could also deal with incorrectness of its action schemas. Whereas a contingent planner simply
assumes that the effects of an action always succeed—that painting the chair does the job—a
replanning agent would check the result and make an additional plan to fix any unexpected
failure, such as an unpainted area or the original color showing through. In classical planning,
where the closed-world assumption is made, we would assume that any fluent not mentioned
in a state is false, but in sensorless (and partially observable) planning we have to switch to
an open-world assumption in which states contain both positive and negative fluents, and if
a fluent does not appear, its value is unknown. Thus, the belief state corresponds exactly to
the set of possible worlds that satisfy the formula. A heuristic function to guide the search
is a piece in sensorless planning puzzle. The meaning of the heuristic function is the same as
for classical planning: an estimate (perhaps admissible) of the cost of achieving the goal from
the given belief state. With belief states, we have one additional fact: solving any subset of
a belief state is necessarily easier than solving the belief state. The decision as to how much
of the problem to solve in advance and how much to leave to replanning is one that involves
tradeoffs among possible events with different costs and probabilities of occurring. Replanning
may also be needed if the agent’s model of the world is incorrect. The model for an action
may have a missing precondition—for example, the agent may not know that removing the lid
of a paint can often requires a screwdriver; the model may have a missing effect—for example,
painting an object may get paint on the floor as well; or the model may have a missing state
variable—for example, the model given earlier has no notion of the amount of paint in a can,
of how its actions affect this amount, or of the need for the amount to be nonzero. The model
may also lack provision for exogenous events such as someone knocking over the paint can.

• Multiagent planning is necessary when there are other agents in the environment with which
to cooperate or compete. Joint plans can be constructed, but must be augmented with some
form of coordination if two agents are to agree on which joint plan to execute.

26

12 Knowledge Representation.

• Representing abstract concepts is sometimes called ontological engineering. We have elected
to use first-order logic to discuss the content and organization of knowledge, although certain
aspects of the real world are hard to capture in FOL. The principal difficulty is that most
generalizations have exceptions or hold only to a degree. Two major characteristics of general-
purpose ontologies distinguish them from collections of special-purpose ontologies:

– A general-purpose ontology should be applicable in more or less any special-purpose do-
main (with the addition of domain-specific axioms). This means that no representational
issue can be finessed or brushed under the carpet.

– In any sufficiently demanding domain, different areas of knowledge must be unified, be-
cause reasoning and problem solving could involve several areas simultaneously.

• Categories and objects. The organization of objects into categories is a vital part of
knowledge representation. There are two choices for representing categories in first-order
logic: predicates and objects. Categories serve to organize and simplify the knowledge base
through inheritance. If we say that all instances of the category Food are edible, and if we
assert that Fruit is a subclass of Food and Apples is a subclass of Fruit, then we can infer that
every apple is edible. First-order logic makes it easy to state facts about categories, either by
relating objects to categories or by quantifying over their members. Here are some types of
facts:

– An object is a member of a category.

– A category is a subclass of another category.

– All members of a category have some properties.

– Members of a category can be recognized by some properties.

– A category as a whole has some properties.

We say that two or more categories are disjoint if they have no members in common. In both
scientific and commonsense theories of the world, objects have height, mass, cost, and so on.
The values that we assign for these properties are called measures. The most important aspect
of measures is not the particular numerical values, but the fact that measures can be ordered.
The real world can be seen as consisting of primitive objects (e.g., atomic particles) and
composite objects built from them. By reasoning at the level of large objects such as apples and
cars, we can overcome the complexity involved in dealing with vast numbers of primitive objects
individually. Some properties are intrinsic: they belong to the very substance of the object,
rather than to the object as a whole. On the other hand, their extrinsic properties—weight,
length, shape, and so on—are not retained under subdivision.

• Events. Events are described as instances of event categories. By reifying events we make
it possible to add any amount of arbitrary information about them. Process categories or
liquid event categories” any process e that happens over an interval also happens over any
subinterval. The distinction between liquid and nonliquid events is exactly analogous to the
difference between substances.

• Mental events and mental object. The agents we have constructed so far have beliefs and
can deduce new beliefs. Yet none of them has any knowledge about beliefs or about deduc-
tion. Knowledge about one’s own knowledge and reasoning processes is useful for controlling
inference. What we need is a model of the mental objects that are in someone’s head (or
something’s knowledge base) and of the mental processes that manipulate those mental ob-
jects. Regular logic is concerned with a single modality, the modality of truth, allowing us to
express “P is true.” Modal logic includes special modal operators that take sentences (rather
than terms) as arguments. For example, ”A knows P” is represented with the notation KAP ,
where K is the modal operator for knowledge. It takes two arguments, an agent (written as

27

the subscript) and a sentence. The syntax of modal logic is the same as first-order logic, except
that sentences can also be formed with modal operators. In first-order logic a model contains
a set of objects and an interpretation that maps each name to the appropriate object, relation,
or function. In modal logic we want to be able to consider both the possibility that Superman’s
secret identity is Clark and that it isn’t. Therefore, we will need a more complicated model,
one that consists of a collection of possible worlds rather than just one true world. The worlds
are connected in a graph by accessibility relations, one relation for each modal operator. One
problem with the modal logic approach is that it assumes logical omniscience on the part of
agents. That is, if an agent knows a set of axioms, then it knows all consequences of those
axioms. This is on shaky ground even for the somewhat abstract notion of knowledge, but it
seems even worse for belief, because belief has more connotation of referring to things that are
physically represented in the agent, not just potentially derivable.

• Reasoning systems for categories. Categories are the primary building blocks of large-scale
knowledge representation schemes. There are two closely related families of systems: semantic
networks provide graphical aids for visualizing a knowledge base and efficient algorithms for
inferring properties of an object on the basis of its category membership; and description log-
ics provide a formal language for constructing and combining category definitions and efficient
algorithms for deciding subset and superset relationships between categories. The semantic
network notation makes it convenient to perform inheritance reasoning. The syntax of first-
order logic is designed to make it easy to say things about objects. Description logics are
notations that are designed to make it easier to describe definitions and properties of cate-
gories. Description logic systems evolved from semantic networks in response to pressure to
formalize what the networks mean while retaining the emphasis on taxonomic structure as an
organizing principle. Perhaps the most important aspect of description logics is their emphasis
on tractability of inference. A problem instance is solved by describing it and then asking if it
is subsumed by one of several possible solution categories.

28

13 Quantifying Uncertainty.

• Agents may need to handle uncertainty, whether due to partial observability, nondeterminism,
or a combination of the two. The right thing to do—the rational decision—therefore depends
on both the relative importance of various goals and the likelihood that, and degree to which,
they will be achieved. The agent’s knowledge can at best provide only a degree of belief in the
relevant sentences. Our main tool for dealing with degrees of belief is probability theory. A
logical agent believes each sentence to be true or false or has no opinion, whereas a probabilistic
agent may have a numerical degree of belief between 0 (for sentences that are certainly false)
and 1 (certainly true). Probability provides a way of summarizing the uncertainty that comes
from our laziness and ignorance, thereby solving the qualification problem. Agent must first
have preferences between the different possible outcomes of the various plans. An outcome
is a completely specified state, including such factors as whether the agent arrives on time
and the length of the wait at the airport. We use utility theory to represent and reason
with preferences. Utility theory says that every state has a degree of usefulness, or utility, to
an agent and that the agent will prefer states with higher utility. Preferences, as expressed
by utilities, are combined with probabilities in the general theory of rational decisions called
decision theory. The fundamental idea of decision theory is that an agent is rational if and only
if it chooses the action that yields the highest expected utility, averaged over all the possible
outcomes of the action. This is called the principle of maximum expected utility (MEU).
Given the belief state, the agent can make probabilistic predictions of action outcomes and
hence select the action with highest expected utility.

• Basic probability notation. In probability theory, the set of all possible worlds is called
the sample space. The possible worlds are mutually exclusive and exhaustive—two possible
worlds cannot both be the case, and one possible world must be the case. The Greek letter Ω
is used to refer to the sample space, and ω refers to elements of the space, that is, particular
possible worlds. Unconditional or prior probabilities refer to degrees of belief in propositions
in the absence of any other information. Most of the time, however, we have some information,
usually called evidence, that has already been revealed. Mathematically speaking, conditional
probabilities are defined in terms of unconditional probabilities as follows: for any propositions
a and b, we have

P (a|b) =
P (a ∧ b)
P (b)

The definition makes sense if you remember that observing b rules out all those possible worlds
where b is false, leaving a set whose total probability is just P (b). Within that set, the a-worlds
satisfy a∧b and constitute a fraction P (a∧b)/P (b). Every random variable has a domain—the
set of possible values it can take on. Probability density functions (sometimes called pdfs) differ
in meaning from discrete distributions. Saying that the probability density is uniform from
18C to 26C means that there is a 100% chance that the temperature will fall somewhere in
that 8C-wide region and a 50% chance that it will fall in any 4C-wide region, and so on. We
write the probability density for a continuous random variable X at value x as P (X = x) or
just P (x); the intuitive definition of P (x) is the probability that X falls within an arbitrarily
small region beginning at x, divided by the width of the region.

• Inference using full joint distributions. We use the full joint distribution as the “knowl-
edge base” from which answers to all questions may be derived. Marginalization, or summing
out: we sum up the probabilities for each possible value of the other variables, thereby taking
them out of the equation:

P (Y) =
∑
z∈Z

P (Y |z)

Conditioning is a variant of marginalization rule that involves conditional probabilities in-
stead of joint probabilities, using the product rule:

P (Y) =
∑
z∈Z

P (Y |z)P (z)

29

• Independence between propositions a and b can be written as:

P (a|b) = P (a) or P (b|a) = P (b) or P (a ∧ b) = P (a)P (b)

Independence assertions are usually based on knowledge of the domain. If the complete set
of variables can be divided into independent subsets, then the full joint distribution can be
factored into separate joint distributions on those subsets.

• Bayes’ rules.

P (b|a) =
P (a|b)P (b)

P (a)

This simple equation underlies most modern AI systems for probabilistic inference. The condi-
tional probability P (effect|cause) quantifies the relationship in the causal direction, whereas
P (cause|effect) describes the diagnostic direction. The general definition of conditional in-
dependence of two variables X and Y , given a third variable Z, is:

P (X,Y |Z) = P (X|Z)P (Y |Z)

The dentistry example illustrates a commonly occurring pattern in which a single cause directly
influences a number of effects, all of which are conditionally independent, given the cause. The
full joint distribution can be written as:

P (Cause,Effect1, ..., Effectn) = P (Cause)
∏
i

P (Effecti|Cause)

Such a probability distribution is called a naive Bayes model—”naive” because it is often used
(as a simplifying assumption) in cases where the ”effect” variables are not actually conditionally
independent given the cause variable.

30

14 Probabilistic Reasoning.

• Representing knowledge in an uncertain domain. A Bayesian network is a directed
graph in which each node is annotated with quantitative probability information. The full
specification is as follows:

– Each node corresponds to a random variable, which may be discrete or continuous.

– A set of directed links or arrows connects pairs of nodes. If there is an arrow from node
X to node Y , X is said to be a parent of Y . The graph has no directed cycles (and hence
is a directed acyclic graph, or DAG).

– Each node Xi has a conditional probability distribution P (Xi|Parents(Xi)) that quan-
tifies the effect of the parents on the node.

The topology of the network—the set of nodes and links—specifies the conditional indepen-
dence relationships that hold in the domain. The intuitive meaning of an arrow is typically
that X has a direct influence on Y , which suggests that causes should be parents of effects. The
combination of the topology and the conditional distributions suffices to specify (implicitly)
the full joint distribution for all the variables. CPT: conditional probability table. Each row
in a CPT contains the conditional probability of each node value for a conditioning case.

• The semantics of bayesian networks. A generic entry in the joint distribution is the
probability of a conjunction of particular assignments to each variable, such as P (X1 = x1 ∧
...∧Xn = xn). We use the notation P (x1, ..., xn) as an abbreviation for this. The value of this
entry is given by the formula:

P (x1, ..., xn) =

n∏
i=1

P (xi|parents(Xi))

The topological semantics specifies that each variable is conditionally independent of its non-
descendants, given its parents. Another important independence property is implied by the
topological semantics: a node is conditionally independent of all other nodes in the network,
given its parents, children, and children’s parents—that is, given its Markov blanket.

• Exact inference in Bayesian Networks. The basic task for any probabilistic inference
system is to compute the posterior probability distribution for a set of query variables, given
some observed event—that is, some assignment of values to a set of evidence variables.

• Approximate inference in Bayesian Networks. The primitive element in any sampling
algorithm is the generation of samples from a known probability distribution. For example,
an unbiased coin can be thought of as a random variable Coin with values < heads, tails >
and a prior distribution P (Coin) =< 0.5, 0.5 >. Sampling from this distribution is exactly
like flipping the coin: with probability 0.5 it will return heads , and with probability 0.5 it
will return tails. Rejection sampling is a general method for producing samples from a hard-
to-sample distribution given an easy-to-sample distribution. In its simplest form, it can be
used to compute conditional probabilities—that is, to determine P (X|e). First, it generates
samples from the prior distribution specified by the network. Then, it rejects all those that
do not match the evidence. Finally, the estimate P̂ (X = x|e) is obtained by counting how
often X = x occurs in the remaining samples. The biggest problem with rejection sampling is
that it rejects so many samples! The fraction of samples consistent with the evidence e drops
exponentially as the number of evidence variables grows, so the procedure is simply unusable
for complex problems. Likelihood weighting avoids the inefficiency of rejection sampling by
generating only events that are consistent with the evidence e. It is a particular instance of
the general statistical technique of importance sampling, tailored for inference in Bayesian
networks. Because likelihood weighting uses all the samples generated, it can be much more
efficient than rejection sampling. It will, however, suffer a degradation in performance as
the number of evidence variables increases. This is because most samples will have very low

31

weights and hence the weighted estimate will be dominated by the tiny fraction of samples
that accord more than an infinitesimal likelihood to the evidence. Markov chain Monte Carlo
(MCMC) algorithms work quite differently from rejection sampling and likelihood weighting.
Instead of generating each sample from scratch, MCMC algorithms generate each sample by
making a random change to the preceding sample. It is therefore helpful to think of an
MCMC algorithm as being in a particular current state specifying a value for every variable
and generating a next state by making random changes to the current state. Gibbs sampling is
a member of MCMC algorithms that is especially well suited for Bayesian networks. The Gibbs
sampling algorithm for Bayesian networks starts with an arbitrary state (with the evidence
variables fixed at their observed values) and generates a next state by randomly sampling a
value for one of the nonevidence variables Xi. The sampling for Xi is done conditioned on the
current values of the variables in the Markov blanket of Xi. The algorithm therefore wanders
randomly around the state space—the space of possible complete assignments—flipping one
variable at a time, but keeping the evidence variables fixed. The sampling process settles into
a “dynamic equilibrium” in which the long-run fraction of time spent in each state is exactly
proportional to its posterior probability. This remarkable property follows from the specific
transition probability with which the process moves from one state to another, as defined by
the conditional distribution given the Markov blanket of the variable being sampled.

32

15 Probabilistic Reasoning over Time.

• From the belief state and a transition model, the agent can predict how the world might evolve
in the next time step. From the percepts observed and a sensor model, the agent can update
the belief state.

• Markov assumption: that the current state depends on only a finite fixed number of previous
states. Processes satisfying this assumption are called Markov chains; the simplest is the
first-order Markov process, in which the current state depends only on the previous state and
not on any earlier states. Hence, in a first-order Markov process, the transition model is
the conditional distribution P (Xt|Xt−1). There are two ways to improve the accuracy of the
approximation:

– Increasing the order of the Markov process model.

– Increasing the set of state variables.

• Inference in temporal models.

– Filtering: This is the task of computing the belief state—the posterior distribution over
the most recent state—given all evidence to date. In other words, given the result of
filtering up to time t, the agent needs to compute the result for t + 1 from the new
evidence et+1.

– Prediction: This is the task of computing the posterior distribution over the future state,
given all evidence to date. The task of prediction can be seen simply as filtering without
the addition of new evidence. In fact, the filtering process already incorporates a one-step
prediction.

– Smoothing: This is the task of computing the posterior distribution over a past state,
given all evidence up to the present.

– Most likely explanation: Given a sequence of observations, we might wish to find the
sequence of states that is most likely to have generated those observations.

– Learning: The transition and sensor models, if not yet known, can be learned from obser-
vations. Note that learning requires smoothing, rather than filtering, because smoothing
provides better estimates of the states of the process. Learning with filtering can fail to
converge correctly.

• Hidden Markov models is a temporal probabilistic model in which the state of the process
is described by a single discrete random variable. The possible values of the variable are the
possible states of the world.

• Kalman filters. In hidden Markov models, variables are discrete, however in Kalman filters,
variables are continuous.

• Dynamic Bayesian networks are Bayesian networks that represent temporal probability
models of the kind described in Section 15.1. In general, each slice of a DBN can have any
number of state variables Xt and evidence variables Et. Every hidden Markov model can be
represented as a DBN with a single state variable and a single evidence variable. It is also the
case that every discrete-variable DBN can be represented as an HMM. The difference between
HMM and DBN is that, by decomposing the state of a complex system into its constituent
variables, the can take advantage of sparseness in the temporal probability model. Not every
DBN can be represented by a Kalman filter model. In a Kalman filter, the current state
distribution is always a single multivariate Gaussian distribution—that is, a single “bump” in
a particular location. DBNs, on the other hand, can model arbitrary distributions.

33

16 Making Simple Decisions.

• Define RESULT (a) as a random variable whose values are the possible outcome states. The
agent’s preferences are captured by a utility function, U(s), which assigns a single number
to express the desirability of a state. The expected utility of an action given the evidence,
EU(a|e), is just the average utility value of the outcomes, weighted by the probability that
the outcome occurs. The principle of maximum expected utility (MEU) says that a rational
agent should choose the action that maximizes the agent’s expected utility. If an agent acts
so as to maximize a utility function that correctly reflects the performance measure, then
the agent will achieve the highest possible performance score (averaged over all the possible
environments). Because the outcome of a nondeterministic action is a lottery, it follows that
an agent can act rationally— that is, consistently with its preferences—only by choosing an
action that maximizes expected utility.

• Utility functions map lotteries to real numbers. The rational way to choose the best action
is to maximize expected utility.

• Decision networks combine Bayesian networks with additional node types for actions and
utilities. Decision networks provide a simple formalism for expressing and solving decision
problems. They are a natural extension of Bayesian networks, containing decision and utility
nodes in addition to chance nodes.

• Sometimes, solving a problem involves finding more information before making a decision. The
value of information is defined as the expected improvement in utility compared with making
a decision without the information.

34

17 Making Complex Decisions.

• We are concerned here with sequential decision problems, in which the agent’s utility depends
on a sequence of decisions. Sequential decision problems incorporate utilities, uncertainty,
and sensing, and include search and planning problems as special cases. Here, the outcome
is stochastic, so we write P (s′|s, a) to denote the probability of reaching state s′ if action a
is done in state s. We will assume that transitions are Markovian, that is, the probability of
reaching s′ from s depends only on s and not on the history of earlier states. To sum up:
a sequential decision problem for a fully observable, stochastic environment with
a Markovian transition model and additive rewards is called a Markov decision
process, or MDP, and consists of a set of states (with an initial state s0); a set
ACTIONS(s) of actions in each state; a transition model P (s|s, a); and a reward
function R(s). A solution must specify what the agent should do for any state that the agent
might reach. A solution of this kind is called a policy. It is traditional to denote a policy by
π, and π(s) is the action recommended by the policy π for state s. If the agent has a complete
policy, then no matter what the outcome of any action, the agent will always know what to do
next. Each time a given policy is executed starting from the initial state, the stochastic nature
of the environment may lead to a different environment history. The quality of a policy is
therefore measured by the expected utility of the possible environment histories generated by
that policy. An optimal policy is a policy that yields the highest expected utility. We use π*
to denote an optimal policy. The first question to answer is whether there is a finite horizon
or an infinite horizon for decision making. A finite horizon means that there is a fixed time
N after which nothing matters—the game is over, so to speak. The optimal policy for a finite
horizon is nonstationary. With no fixed time limit, on the other hand, there is no reason to
behave differently in the same state at different times. Hence, the optimal action depends only
on the current state, and the optimal policy is stationary. If you prefer one future to another
starting tomorrow, then you should still prefer that future if it were to start today instead.
Stationarity is a fairly innocuous-looking assumption with very strong consequences: it turns
out that under stationarity there are just two coherent ways to assign utilities to sequences:

– Additive rewards: The utility of a state sequence is

Uh([s0, s1, s2, ...]) = R(s0) +R(s1) +R(s2) + ...

– Discounted rewards: The utility of a state sequence is

Uh([s0, s1, s2, ...]) = R(s0) + γR(s1) + γ2R(s2) + ...

where the discount factor γ is a number between 0 and 1.

Intuitively, the utility of taking action in some state is the expected immediate reward for that
action plus the sum of the long-term rewards over the rest of the agent’s lifetime, assuming it
acts using the best policy. If we knew the utility function, then the optimal policy would be
to enumerate all possible actions and choose the action with the highest utility.

• Value iteration.

– Bellman equation. the utility of a state is the immediate reward for that state plus
the expected discounted utility of the next state, assuming that the agent chooses the
optimal action. That is, the utility of a state is given by

U(s) = R(s) + γ max
a∈A(s)

∑
s′

P (s′|s, a)U(s′)

– Value iteration. If there are n possible states, then there are n Bellman equations,
one for each state. The n equations contain n unknowns—the utilities of the states. So
we would like to solve these simultaneous equations to find the utilities. We start with

35

arbitrary initial values for the utilities, calculate the right-hand side of the equation, and
plug it into the left-hand side—thereby updating the utility of each state from the utilities
of its neighbors. We repeat this until we reach an equilibrium. Let Ui(s) be the utility
value for state s at the ith iteration. The iteration step, called a Bellman update, looks
like this:

Ui+1(s)← R(s) + γ max
a∈A(s)

∑
s′

P (s′|s, a)Ui(s
′)

the corresponding policy is optimal.

• Policy iteration. In the previous section, we observed that it is possible to get an optimal
policy even when the utility function estimate is inaccurate. If one action is clearly better
than all others, then the exact magnitude of the utilities on the states involved need not be
precise. This insight suggests an alternative way to find optimal policies. The policy iteration
algorithm alternates the following two steps, beginning from some initial policy π0:

– Policy evaluation: given a policy πi , calculate Ui = Uπi , the utility of each state if πi
were to be executed.

– Policy improvement: Calculate a new MEU policy πi+1, using one-step look-ahead based
on Ui.

The algorithm terminates when the policy improvement step yields no change in the utilities.
The algorithms we have described so far require updating the utility or policy for all states at
once. It turns out that this is not strictly necessary. In fact, on each iteration, we can pick
any subset of states and apply either kind of updating (policy improvement or simplified value
iteration) to that subset. This very general algorithm is called asynchronous policy iteration.

• Partially observable MDPs. When the environment is only partially observable, the sit-
uation is, one might say, much less clear. The agent does not necessarily know which state
it is in, so it cannot execute the action π(s) recommended for that state. Furthermore, the
utility of a state s and the optimal action in s depend not just on s, but also on how much
the agent knows when it is in s. For these reasons, partially observable MDPs (or POMDPs)
are usually viewed as much more difficult than ordinary MDPs. In POMDPs, there is a sensor
model P (e|s). the sensor model specifies the probability of perceiving evidence e in state s. In
POMDPs, the belief state b becomes a probability distribution over all possible states. If b(s)
was the previous belief state, and the agent does action a and then perceives evidence e, then
the new belief state is given by

b′(s′) = αP (e|s′)
∑
s

P (s′|s, a)b(s)

where α is the normalizing constant that makes the belief state sum to 1. The fundamental
insight required to understand POMDPs is this: the optimal action depends only on the agent’s
current belief state. That is, the optimal policy can be described by a mapping π∗(b) from
belief states to actions. It does not depend on the actual state the agent is in. This is a good
thing, because the agent does not know its actual state; all it knows is the belief state. Hence,
the decision cycle of a POMDP agent can be broken down into the following three steps:

– Given the current belief state b, execute the action a = π∗(b).

– Receive percept e.

– Set the current belief state to FORWARD(b, a, e) and repeat.

Now we can think of POMDPs as requiring a search in belief-state space, just like the methods
for sensorless and contingency problems in Chapter 4. The main difference is that the POMDP
belief-state space is continuous, because a POMDP belief state is a probability distribution.

36

18 Learning From Examples.

• In unsupervised learning the agent learns patterns in the input even though no explicit feed-
back is supplied. The most common unsupervised learning task is clustering. In reinforcement
learning the agent learns from a series of reinforcements—rewards or punishments. In super-
vised learning the agent observes some example input–output pairs and learns a function that
maps from input to output. In semi-supervised learning we are given a few labeled examples
and must make what we can of a large collection of unlabeled examples. Even the labels
themselves may not be the oracular truths that we hope for.

• Supervised learning. Given a training set of N example input–output pairs:

(x1, y1), (x2, y2), ..., (xN , yN)

where each yi was generated by an unknown function y = f(x), discover a function h that
approximates the true function f . When the output y is one of a finite set of values (such as
sunny, cloudy or rainy), the learning problem is called classification, and is called Boolean or
binary classification if there are only two values. When y is a number (such as tomorrow’s
temperature), the learning problem is called regression.

• K-fold cross-validation: First we split the data into k equal subsets. We then perform k rounds
of learning; on each round 1/k of the data is held out as a test set and the remaining examples
are used as training data. The average test set score of the k rounds should then be a better
estimate than a single score.

• Regularization looks for a function that is more regular, or less complex. Which regulariza-
tion function should you pick? That depends on the specific problem, but L1 regularization
has an important advantage: it tends to produce a sparse model. That is, it often sets many
weights to zero, effectively declaring the corresponding attributes to be irrelevant.

• Linear regression. A univariate linear function (a straight line) with input x and output y
has the form y = w1x+w0, where w0 and w1 are real-valued coefficients to be learned. To fit
a line to the data, all we have to do is find the values of the weights [w0, w1] that minimize
the empirical loss.

Loss(hw) =

N∑
j=1

(yj − (w1xj + w0))2

We would like to find w∗ = argminwLoss(hw). To do so, we will face a general optimization
search problem in a continuous weight space. Such problems can be addressed by a hill-climbing
algorithm that follows the gradient of the function to be optimized. In this case, because we
are trying to minimize the loss, we will use gradient descent. We choose any starting point in
weight space—here, a point in the (w0, w1) plane—and then move to a neighboring point that
is downhill, repeating until we converge on the minimum possible loss:

w ← any point in the parameter space

loop until convergence do

for each wi in w do

wi ← wi − α
∂

∂wi
Loss(w)

We can easily extend to multivariate linear regression problems, in which each example xj is
an n-element vector. Our hypothesis space is the set of functions of the form:

hsw(xj) = w1xj,1 + ...+ wnxj,n = w · xj = wTxj

It is common to use regularization on multivariate linear functions to avoid overfitting.

37

• Artificial neural network. Neural networks are composed of nodes or units connected by
directed links. A link from unit i to unit j serves to propagate the activation ai from i to
j. Each link also has a numeric weight wi,j associated with it, which determines the strength
and sign of the connection. Just as in linear regression models, each unit has a dummy input
a0 = 1 with an associated weight w0,j . Each unit j first computes a weighted sum of its inputs:

inj =

n∑
i=0

wi,jai

Then it applies an activation function g to this sum to derive the output:

aj = g(inj)

Nonlinear activation function ensure the important property that the entire network of units
can represent a nonlinear function.

• Nonparametric models. A learning model that summarizes data with a set of parameters
of fixed size (independent of the number of training examples) is called a parametric model. A
nonparametric model is one that cannot be characterized by a bounded set of parameters. This
approach is called instance-based learning or memory-based learning. The simplest instance-
based learning method is table lookup. We can improve on table lookup with a slight variation:
given a query xq , find the k examples that are nearest to x. This is called k-nearest neighbors
lookup. Nonparametric methods are still subject to underfitting and overfitting, just like
parametric methods.

• Support vector machines are attractive because:

– SVMs construct a maximum margin separator—a decision boundary with the largest
possible distance to example points. This helps them generalize well.

– SVMs create a linear separating hyperplane, but they have the ability to embed the data
into a higher-dimensional space, using the so-called kernel trick. Often, data that are not
linearly separable in the original input space are easily separable in the higher-dimensional
space. The high-dimensional linear separator is actually nonlinear in the original space.
This means the hypothesis space is greatly expanded over methods that use strictly linear
representations.

– SVMs are a nonparametric method—they retain training examples and potentially need
to store them all. On the other hand, in practice they often end up retaining only a
small fraction of the number of examples—sometimes as few as a small constant times
the number of dimensions. Thus SVMs combine the advantages of nonparametric and
parametric models: they have the flexibility to represent complex functions, but they are
resistant to overfitting.

Instead of minimizing expected empirical loss on the training data, SVMs attempt to minimize
expected generalization loss.
Now what if the examples are not linearly separable? If data are mapped into a space of
sufficiently high dimension, then they will almost always be linearly separable—if you look at
a set of points from enough directions, you’ll find a way to make them line up. In general
(with some special cases excepted) if we have N data points then they will always be separable
in spaces of N − 1 dimensions or more. The resulting linear separators, when mapped back to
the original input space, can correspond to arbitrarily wiggly, nonlinear decision boundaries
between the positive and negative examples. In the case of inherently noisy data, we may not
want a linear separator in some high-dimensional space. Rather, we’d like a decision surface
in a lower-dimensional space that does not cleanly separate the classes, but reflects the reality
of the noisy data. That is possible with the soft margin classifier, which allows examples to
fall on the wrong side of the decision boundary, but assigns them a penalty proportional to
the distance required to move them back on the correct side.

38

• Ensemble learning. The idea of ensemble learning methods is to select a collection, or
ensemble, of hypotheses from the hypothesis space and combine their predictions. For example,
during cross-validation we might generate twenty different decision trees, and have them vote
on the best classification for a new example. Boost and especially AdaBoost are from this
family of learning algorithms. Ensemble methods such as boosting often perform better than
individual methods. In online learning we can aggregate the opinions of experts to come
arbitrarily close to the best expert’s performance, even when the distribution of the data is
constantly shifting.

39

19 Knowledge in Learning.

• This chapter has investigated various ways in which prior knowledge can help an agent to learn
from new experiences.

• The use of prior knowledge in learning leads to a picture of cumulative learning, in which
learning agents improve their learning ability as they acquire more knowledge.

• Prior knowledge helps learning by eliminating otherwise consistent hypotheses and by ”filling
in” the explanation of examples, thereby allowing for shorter hypotheses. These contributions
often result in faster learning from fewer examples.

• Understanding the different logical roles played by prior knowledge, as expressed by entailment
constraints, helps to define a variety of learning techniques.

• Explanation-based learning (EBL) extracts general rules from single examples by explaining
the examples and generalizing the explanation. It provides a deductive method for turning
first-principles knowledge into useful, efficient, special-purpose expertise.

• Relevance-based learning (RBL) uses prior knowledge in the form of determinations to iden-
tify the relevant attributes, thereby generating a reduced hypothesis space and speeding up
learning. RBL also allows deductive generalizations from single examples.

• Knowledge-based inductive learning (KBIL) finds inductive hypotheses that explain sets of
observations with the help of background knowledge.

• Inductive logic programming (ILP) techniques perform KBIL on knowledge that is expressed
in first-order logic. ILP methods can learn relational knowledge that is not expressible in
attribute-based systems. ILP can be done with a top-down approach of refining a very gen-
eral rule or through a bottom-up approach of inverting the deductive process. ILP methods
naturally generate new predicates with which concise new theories can be expressed and show
promise as general-purpose scientific theory formation systems.

40

20 Learning Probabilistic Models.

• The data are evidence—that is, instantiations of some or all of the random variables describing
the domain. The hypotheses in this chapter are probabilistic theories of how the domain
works, including logical theories as a special case. Bayesian learning simply calculates the
probability of each hypothesis, given the data, and makes predictions on that basis. That is,
the predictions are made by using all the hypotheses, weighted by their probabilities, rather
than by using just a single “best” hypothesis. In this way, learning is reduced to probabilistic
inference. The hypotheses themselves are essentially ”intermediaries” between the raw data
and the predictions. The key quantities in the Bayesian approach are the hypothesis prior,
P (hi), and the likelihood of the data under each hypothesis, P (d|hi). The Bayesian prediction
eventually agrees with the true hypothesis. This is characteristic of Bayesian learning. A very
common approximation—one that is usually adopted in science—is to make predictions based
on a single most probable hypothesis—that is, an hi that maximizes P (hi|d). This is often
called a maximum a posteriori or MAP hypothesis.

• By taking logarithms, we reduce the product to a sum over the data, which is
usually easier to maximize.

• Maximum-likelihood learning simply selects the hypothesis that maximizes the likelihood of
the data; it is equivalent to MAP learning with a uniform prior. In simple cases such as linear
regression and fully observable Bayesian networks, maximum-likelihood solutions can be found
easily in closed form. Naive Bayes learning is a particularly effective technique that scales well.

• When some variables are hidden, local maximum likelihood solutions can be found using the
EM algorithm. Applications include clustering using mixtures of Gaussians, learning Bayesian
networks, and learning hidden Markov models.

• Learning the structure of Bayesian networks is an example of model selection. This usually
involves a discrete search in the space of structures. Some method is required for trading off
model complexity against degree of fit.

• Nonparametric models represent a distribution using the collection of data points. Thus, the
number of parameters grows with the training set. Nearest-neighbors methods look at the
examples nearest to the point in question, whereas kernel methods form a distance-weighted
combination of all the examples.

41

21 Reinforcement Learning.

• An optimal policy is a policy that maximizes the expected total reward. The task of reinforce-
ment learning is to use observed rewards to learn an optimal (or nearly optimal) policy for the
environment.

• Three different agent designs:

– A utility-based agent learns a utility function on states and uses it to select actions that
maximize the expected outcome utility. (Model-based)

– A Q-learning agent learns an action-utility function, or Q-function, giving the expected
utility of taking a given action in a given state. (Model-free)

– A reflex agent learns a policy that maps directly from states to actions.

• Passive reinforcement learning. In passive learning, the agent’s policy π is fixed: in state
s, it always executes the action π(s). Its goal is simply to learn how good the policy is—that is,
to learn the utility function Uπ(s). The passive learning task is similar to the policy evaluation
task, the main difference is that the passive learning agent does not know the transition model
P (s′|s, a), which specifies the probability of reaching state s′ from state s after doing action
a; nor does it know the reward function R(s), which specifies the reward for each state. The
utility is defined to be the expected sum of (discounted) rewards obtained if policy π is followed:

Uπ(s) = E

∞∑
t=0

γtR(St)

where R(s) is the reward for a state, St (a random variable) is the state reached at time t
when executing policy π, and S0 = s, and γ is the discount factor.
It is clear that direct utility estimation is just an instance of supervised learning where each
example has the state as input and the observed reward-to-go as output. This means that we
have reduced reinforcement learning to a standard inductive learning problem. The utilities of
states are not independent! The utility of each state equals its own reward plus the expected
utility of its successor states. That is, the utility values obey the Bellman equations for a fixed
policy:

Uπ(s) = R(s) + γ
∑
s′

P (s′|s, π(s))Uπ(s′)

Bayesian reinforcement learning, assumes a prior probability P (h) for each hypothesis h about
what the true model is; the posterior probability P (h|e) is obtained in the usual way by Bayes’
rule given the observations to date. Then, if the agent has decided to stop learning, the optimal
policy is the one that gives the highest expected utility.

• Temporal-difference learning. When a transition occurs from state s to state s′, we apply
the following update to Uπ(s):

Uπ(s)← +α(R(s) + γUπ(s′)− Uπ(s))

Here, α is the learning rate parameter. Because this update rule uses the difference in utilities
between successive states, it is often called the temporal-difference, or TD, equation. One
might think that this causes an improperly large change in Uπ(s) when a very rare transition
occurs; but, in fact, because rare transitions occur only rarely, the average value of Uπ(s) will
converge to the correct value. TD does not need a transition model to perform its updates.
The environment supplies the connection between neighboring states in the form of observed
transitions. TD adjusts a state to agree with its observed successor.

• Active reinforcement learning. A passive learning agent has a fixed policy that determines
its behavior. An active agent must decide what actions to take. First, the agent will need to

42

learn a complete model with outcome probabilities for all actions, rather than just the model for
the fixed policy. The simple learning mechanism used by PASSIVE-ADP-AGENT will do just
fine for this. Next, we need to take into account the fact that the agent has a choice of actions.
Greedy agent: chooses the best action at each step. Repeated experiments show that the
greedy agent very seldom converges to the optimal policy. That is because the learned model
is not the same as the true environment; what is optimal in the learned model can therefore
be suboptimal in the true environment. Unfortunately, the agent does not know what the
true environment is, so it cannot compute the optimal action for the true environment. What
the greedy agent has overlooked is that actions do more than provide rewards according to
the current learned model; they also contribute to learning the true model by affecting the
percepts that are received. By improving the model, the agent will receive greater rewards
in the future. An agent therefor must make a tradeoff between exploitation to maximize its
reward—as reflected in its current utility estimates—and exploration to maximize its long-
term well-being. Pure exploitation risks getting stuck in a rut. Pure exploration to improve
one’s knowledge is of no use if one never puts that knowledge into practice. it is nonetheless
possible to come up with a reasonable scheme that will eventually lead to optimal behavior by
the agent. Technically, any such scheme needs to be greedy in the limit of infinite exploration,
or GLIE. A GLIE scheme must try each action in each state an unbounded number of times
to avoid having a finite probability that an optimal action is missed because of an unusually
bad series of outcomes. An ADP agent using such a scheme will eventually learn the true
environment model. A GLIE scheme must also eventually become greedy, so that the agent’s
actions become optimal with respect to the learned (and hence the true) model. There are
several GLIE schemes; one of the simplest is to have the agent choose a random action a
fraction 1/t of the time and to follow the greedy policy otherwise. While this does eventually
converge to an optimal policy, it can be extremely slow. A more sensible approach would give
some weight to actions that the agent has not tried very often, while tending to avoid actions
that are believed to be of low utility. Let us use U+(s) to denote the optimistic estimate of the
utility (i.e., the expected reward-to-go) of the state s, and let N(s, a) be the number of times
action a has been tried in state s. Suppose we are using value iteration in an ADP learning
agent; then we need to rewrite the update equation to incorporate the optimistic estimate.
The following equation does this:

U+(s)← R(s) + γmax
z
f(
∑
s′

P (s′|s, a)U+(s′), N(s, a))

Here, f(u, n) is called the exploration function. It determines how greed (preference for high
values of u) is traded off against curiosity (preference for actions that have not been tried often
and have low n). The function f(u, n) should be increasing in u and decreasing in n.
Q-learning learns an action-utility representation instead of learning utilities. We will use the
notation Q(s, a) to denote the value of doing action a in state s. Q-values are directly related
to utility values as follows:

U(s) = max
a

Q(s, a)

Q-functions may seem like just another way of storing utility information, but they have a
very important property: a TD agent that learns a Q-function does not need a model
of the form P (s′|s, a), either for learning or for action selection. For this reason, Q-
learning is called a model-free method. As with utilities, we can write a constraint equation
that must hold at equilibrium when the Q-values are correct:

Q(s, a) = R(s) + γ
∑
s′

P (s′|s, a) max
a′

Q(s′, a′)

The update equation for TD Q-learning is:

Q(s, a)← Q(s, a) + α(R(s) + γmax
a′

Q(s′, a′)−Q(s, a))

43

which is calculated whenever action a is executed in state s leading to state s′.
Q-learning has a close relative called SARSA (for State-Action-Reward-State-Action). The
update rule for SARSA is:

Q(s, a)← Q(s, a) + α(R(s) + γQ(s′, a′)−Q(s, a))

where a′ is the action actually taken in state s′. The rule is applied at the end of each
s, a, r, s′, a′ quintuplet—hence the name. The difference from Q-learning is quite subtle:
whereas Q-learning backs up the best Q-value from the state reached in the observed transi-
tion, SARSA waits until an action is actually taken and backs up the Q-value for that action.
Q-learning uses the best Q-value, it pays no attention to the actual policy being followed—it
is an off-policy learning algorithm, whereas SARSA is an on-policy algorithm. Q-learning is
more flexible than SARSA, in the sense that a Q-learning agent can learn how to behave well
even when guided by a random or adversarial exploration policy. On the other hand, SARSA
is more realistic: for example, if the overall policy is even partly controlled by other agents,
it is better to learn a Q-function for what will actually happen rather than what the agent
would like to happen.

• Generalization in reinforcement learning. One way to handle big state spaces is to use
function approximation, which simply means using any sort of representation for the Q-function
other than a lookup table. The compression achieved by a function approximator allows the
learning agent to generalize from states it has visited to states it has not visited. That is, the
most important aspect of function approximation is not that it requires less space, but that it
allows for inductive generalization over input states. For reinforcement learning, it makes more
sense to use an online learning algorithm that updates the parameters after each trial. Function
approximation can also be very helpful for learning a model of the environment. Remember
that learning a model for an observable environment is a supervised learning problem, because
the next percept gives the outcome state.

• Policy search. The idea is to keep twiddling the policy as long as its performance improves,
then stop. Remember that a policy π is a function that maps states to actions. We are
interested primarily in parameterized representations of π that have far fewer parameters than
there are states in the state space. Q-function as a policy:

π(s) = max
a

Qθ(s, a)

Notice that if the policy is represented by Q-functions, then policy search results in a process
that learns Q-functions. This process is not the same as Q-learning! In Q-learning with
function approximation, the algorithm finds a value of θ such that Qθ is “close” to Q*, the
optimal Q-function. Policy search, on the other hand, finds a value of θ that results in good
performance; the values found by the two methods may differ very substantially.

44

22 Natural Language Processing.

• Language models. Ultimately, a written text is composed of characters—letters, digits,
punctuation, and spaces in English (and more exotic characters in some other languages).
Thus, one of the simplest language models is a probability distribution over sequences of
characters. A sequence of written symbols of length n is called an n-gram. An n-gram model
is defined as a Markov chain of order n− 1. In a Markov chain the probability of character ci
depends only on the immediately preceding characters, not on any other characters:

P (c1 : N) =

N∏
i=1

P (ci|C1:i−1)

We call a body of text a corpus. We will adjust our language model so that sequences that have
a count of zero in the training corpus will be assigned a small nonzero probability. The process
of adjusting the probability of low-frequency counts is called smoothing. We can evaluate a
model with cross-validation. Split the corpus into a training corpus and a validation corpus.
Determine the parameters of the model from the training data. Then evaluate the model on
the validation corpus. This metric is inconvenient because the probability of a large corpus
will be a very small number, and floating-point underflow becomes an issue. A different way
of describing the probability of a sequence is with a measure called perplexity, defined as:

Perplexity(c1 : N) = P (c1 : N)−1/N

Perplexity can be thought of as the reciprocal of probability, normalized by sequence length.
Suppose there are 100 characters in our language, and our model says they are all equally
likely. Then for a sequence of any length, the perplexity will be 100. If some characters are
more likely than others, and the model reflects that, then the model will have a perplexity less
than 100. In general, perplexity is a measurement of how well a probability model predicts a
sample.
Now we turn to n-gram models over words rather than characters. All the same mechanism
applies equally to word and character models. The main difference is that the vocabulary—
the set of symbols that make up the corpus and the model—is larger. Word n-gram models
need to deal with out of vocabulary words. This can be done by adding just one new word to
the vocabulary: < UNK >, standing for the unknown word.

• Text classification. Given a text of some kind, decide which of a predefined set of classes
it belongs to. If there are 100,000 words in the language model, then the feature vector has
length 100,000, but for a short email message almost all the features will have count zero. This
unigram representation has been called the bag of words model. You can think of the model
as putting the words of the training corpus in a bag and then selecting words one at a time. It
can be expensive to run algorithms on a very large feature vector, so often a process of feature
selection is used to keep only the features that best discriminate between spam and ham.

• Information retrieval is the task of finding documents that are relevant to a user’s need for
information. An information retrieval (henceforth IR) system can be characterized by:

– A corpus of documents. Each system must decide what it wants to treat as a document:
a paragraph, a page, or a multipage text.

– Queries posed in a query language. A query specifies what the user wants to know. The
query language can be just a list of words, such as [AI book]; or it can specify a phrase
of words that must be adjacent, as in [”AI book”]; it can contain Boolean operators as in
[AI AND book]; it can include non-Boolean operators such as [AI NEAR book].

– A result set. This is the subset of documents that the IR system judges to be relevant to
the query. By relevant, we mean likely to be of use to the person who posed the query,
for the particular information need expressed in the query.

45

– A presentation of the result set. This can be as simple as a ranked list of document titles
or as complex as a rotating color map of the result set projected onto a three-dimensional
space, rendered as a two-dimensional display.

• The earliest IR systems worked on a Boolean keyword model. Each word in the document
collection is treated as a Boolean feature that is true of a document if the word occurs in the
document and false if it does not. It has some disadvantages. First, the degree of relevance of a
document is a single bit, so there is no guidance as to how to order the relevant documents for
presentation. Second, Boolean expressions are unfamiliar to users who are not programmers
or logicians. Third, it can be hard to formulate an appropriate query. Most IR systems have
abandoned the Boolean model and use models based on the statistics of word counts. A
scoring function takes a document and a query and returns a numeric score; the most relevant
documents have the highest scores. Traditionally, there have been two measures used in the
scoring: recall and precision. Precision measures the proportion of values in the result set that
are actually relevant. Recall measures the proportion of all the relevant values in the collection
that are in the result set. It is possible to trade off precision against recall by varying the size
of the result set returned.

• Information extraction is the process of acquiring knowledge by skimming a text and looking
for occurrences of a particular class of object and for relationships among objects. Information-
extraction systems use a more complex model that includes limited notions of syntax and
semantics in the form of templates. They can be built from finite-state automata, HMMs, or
conditional random fields, and can be learned from examples.

46

23 Natural Language for Communication.

• A grammar is a collection of rules that defines a language as a set of allowable strings of
words. VP (verb phrase) and NP (noun phrase) are non-terminal symbols. The grammar also
refers to actual words, which are called terminal symbols. Formal language theory and phrase
structure grammars (and in particular, context-free grammar) are useful tools for dealing with
some aspects of natural language. The probabilistic context-free grammar (PCFG) formalism
is widely used.

• Syntactic analysis (Parsing). Parsing is the process of analyzing a string of words to
uncover its phrase structure, according to the rules of a grammar.

• A treebank can be used to learn a grammar. It is also possible to learn a grammar from an
unparsed corpus of sentences, but this is less successful.

• It is convenient to augment a grammar to handle such problems as subject–verb agreement and
pronoun case. Definite clause grammar (DCG) is a formalism that allows for augmentations.
With DCG, parsing and semantic interpretation (and even generation) can be done using
logical inference.

• Ambiguity is a very important problem in natural language understanding; most sentences
have many possible interpretations, but usually only one is appropriate. Disambiguation relies
on knowledge about the world, about the current situation, and about language use.

• Machine translation systems have been implemented using a range of techniques, from full
syntactic and semantic analysis to statistical techniques based on phrase frequencies. Currently
the statistical models are most popular and most successful.

• Speech recognition systems are also primarily based on statistical principles. Speech systems
are popular and useful, albeit imperfect.

• Together, machine translation and speech recognition are two of the big successes of natural
language technology. One reason that the models perform well is that large corpora are
available—both translation and speech are tasks that are performed ”in the wild” by people
every day. In contrast, tasks like parsing sentences have been less successful, in part because
no large corpora of parsed sentences are available ”in the wild” and in part because parsing is
not useful in and of itself.

47

24 Perception.

• The feature extraction approach, emphasizes simple computations applied directly to the sensor
observations. In the recognition approach an agent draws distinctions among the objects it
encounters based on visual and other information. Finally, in the reconstruction approach an
agent builds a geometric model of the world from an image or a set of images.

• Early image processing operations. Edges are straight lines or curves in the image plane
across which there is a ”significant” change in image brightness. The goal of edge detection is
to abstract away from the messy, multimegabyte image and toward a more compact, abstract
representation. The motivation is that edge contours in the image correspond to important
scene contours. In computational vision, texture refers to a spatially repeating pattern on a
surface that can be sensed visually. Whereas brightness is a property of individual pixels, the
concept of texture makes sense only for a multipixel patch. When an object in the video is
moving, or when the camera is moving relative to an object, the resulting apparent motion in
the image is called optical flow. Optical flow describes the direction and speed of motion of
features in the image. Segmentation is the process of breaking an image into regions of similar
pixels.

• Object recognition by appearance. Appearance is shorthand for what an object tends
to look like. We sweep a round window of fixed size over the image, compute features for it,
and present the features to a classifier. This strategy is sometimes called the sliding window.
Features need to be robust to shadows and to changes in brightness caused by illumination
changes. One strategy is to build features out of gradient orientations. Another is to estimate
and correct the illumination in each image window.

48

	Introduction
	Intelligent Agents
	Solving Problems By Searching
	Beyond Classical Search
	Adversarial Search
	Constraint Satisfaction Problems
	Logical Agents
	First-Order Logic.
	Inference in First-Order Logic
	Classical Planning
	Planning and Acting in the Real World.
	Knowledge Representation.
	Quantifying Uncertainty.
	Probabilistic Reasoning.
	Probabilistic Reasoning over Time.
	Making Simple Decisions.
	Making Complex Decisions.
	Learning From Examples.
	Knowledge in Learning.
	Learning Probabilistic Models.
	Reinforcement Learning.
	Natural Language Processing.
	Natural Language for Communication.
	Perception.

