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1 Linear Algebra.

Linear algebra is the study of vectors and certain rules to manipulate vectors.

For a real-valued system of linear equations we obtain either no, exactly one, or infinitely many
solutions.

In a system of linear equations with two variables z1; x2, each linear equation defines a line
on the xyxo-plane. Since a solution to a system of linear equations must satisfy all equations
simultaneously, the solution set is the intersection of these lines.

R™>™ ig the set of all real-valued (m;n)-matrices. A € R™*™ can be equivalently represented
as a € R™” by stacking all n columns of the matrix into a long vector.

Identity matrix: in R™*" we define the I-matrix:

10 .. 0 .. 0
1 oo 0 .. 0
0 0 1 0
00 .. 0 .. 1]

as the n x n-matrix containing 1 on the diagonal and 0 everywhere else.

Inverse matrix: Consider having a matrix A, if there is a matrix B where AB = I, then B
is called the inverse of A and denoted by A~!. When the matrix inverse exists, it is unique.

Transpose: For A € R™*™ the matrix B € R™*™ with b;; = a,; is called the transpose of A.
We write B = AT, In other words, rows of A should be written as columns of A”.
Important properties of inverses and transposes:

AAT ' =T=47'4A

(AB)"'=B71ta™!
(A+B) ' £ A1+ B!

(AN =4
(A+B)T = AT + BT
(AB)T = BT AT

A matrix is symmetric if A = AT,

System of linear equations to matrix multiplication:
201 +3x2 +bx3 =1
4r1 — 229 — Tx3 =8
921 + 529 — 323 = 2

can be written as:
2 3 5 T

1
4 -2 -7 To| = 8
9 ) -3 X3 2



e Gaussian elimination, also known as row reduction, is an algorithm in linear algebra for
solving a system of linear equations. To perform row reduction on a matrix, one uses a
sequence of elementary row operations to modify the matrix until the lower left-hand corner
of the matrix is filled with zeros, as much as possible. There are three types of elementary row
operations:

— Swapping two rows,
— Multiplying a row by a nonzero number,

— Adding a multiple of one row to another row.

Using these operations, a matrix can always be transformed into an upper triangular matrix,
and in fact one that is in row echelon form. Once all of the leading coefficients (the leftmost
nonzero entry in each row) are 1, and every column containing a leading coefficient has zeros
elsewhere, the matrix is said to be in reduced row echelon form. This final form is unique; in
other words, it is independent of the sequence of row operations used.

Convert the system of equations above into an augmented matrix:
1 3 1 4

2 -8 8 |-2
-6 3 -15| 9

This matrix contains all of the information in the system of equations without the x, y, and z labels to carry around. Now carry out the
process outlined above. The notation to the right of each matrix describes the row operations that were performed to get the matrix on that
line. For example 2R_1+R_2 -> R_2 means "replace row 2 with the sum of 2 times row 1 and row 2".

1 -3 1 4

—2R1+ Rg — Ry
0 -2 6 |-10
0 -15 —9| 33 B+ R o Ra
1-3 14 tp R,
0 -1 3|5 §277
0 -5 3|11 3ha s
1 -3 1|4
0 -1 3 |—5| —5Ri+Rs—Ra

0 0 18|36

If we now reverse the conversion process and turn the augmented matrix into a system of equations we have

T— Jy+ z2= 4
0z— y+ 3z2= -5
Oz+ Qy— 18z2= 36

We can now easily solve for x, y, and z by back-substitution.

e Vector spaces.

e Image and kernel.



2 Analytic Geometry.

Norms. Discusses the notion of the length of vectors using the concept of a norm. A norm
on a vector space V is a function:

[|.I| : VRightarrowR, xRightarrow||z||

which assigns each vector x its length ||z|| € R, such that for all A € R and z,y € V the
following hold:

— Absolutely homogeneous: ||Az|| = |A|||z||
— Triangle inequality: ||z + y|| < ||z|| + ||y||
— Positive definite: ||z|| > 0 and ||z||=0< 2 =0

Manhattan norm (L1 norm): on R” is defined for x € R™ as

n
lzlls =3 Jal
i=1

Euclidean norm (L2 norm): on R™ is defined for = € R™ as

|22 =

Inner product. A major purpose of inner products is to determine whether vectors are
orthogonal to each other.

Dot product is a particular type of inner product:
n
aly = Z TiYi
i=1

A symmetric matrix is a square matrix that is equal to its transpose.

A symmetric n x n real matrix M is said to be positive definite if the scalar 27 Mz is strictly
positive for every non-zero column vector z of n real numbers.

We can compute lengths of vectors using the inner product.

Algebraically, the dot product is the sum of the products of the corresponding entries of the
two sequences of numbers. Geometrically, it is the product of the Euclidean magnitudes of the
two vectors and the cosine of the angle between them.

Two vectors z and y are orthogonal if and only if < x,y >= 0, and we write z L y.

Inner product of functions. An inner product of two functions u : RRightarrowR and
v : RRightarrowR can be defined as the definite integral:

<u,v >i= /ab u(z)v(x)dx

If above integral evaluates to 0, then functions u and v are orthogonal. Furthermore, unlike
inner products on finite-dimensional vectors, inner products on functions may diverge (have
infinite value). As an example, for functions u = sin(z) and v = cos(x), since fab u(z)v(z)dx
evaluates to 0 in the limits of a = —m and b = 7, therefore sin and cos are orthogonal functions.

we can project the original high-dimensional data onto a lower-dimensional feature space and
work in this lower-dimensional space to learn more about the dataset and extract relevant
patterns. PCA or autoencoders exploit this idea.



3 Matrix Decomposition.

e Determinant and trace. Determinants are only defined for square matrices A € R™*"™.
Determinant is a function that maps a matrix into a real number. It is calculated for A € R2*?
as:

det(A) = {au am] = Q11022 — 12021
a1 ag2

The inverse of A is

A1 = 1 [an a12:|

aijQgz — ai202; [@21 422

Hence A is invertible iff
a11a22 — aiza21 7 0

This shows the relationship between determinants and the existence of inverse matrices. So
for any square matrix A € R™*" it holds that A is invertible if and only if det(A) # 0.

For a triangular matrix, the determinant is the product of the diagonal elements.

Some properties of determinant is as follows:

det(AB) = det(A)det(B)
— det(A) = det(AT)

— det(A™! = 7det1(A)

— Determinant is invariant to the choice of basis of a linear mapping.

— det(MA) = A\"det(A)

e Eigenvalues and Eigenvectors. Let A € R"*™ be a square matrix. Then A € R is an
eigenvalue of A and x € R™\ {0} is the corresponding eigenvector of A if

Ax = \x

— ) is an eigenvalue of A € R"*"

— There exists an z € R" \ {0} with Ax = Az or equivalently x = 0 can be solved non-
trivially, i.e.  # 0.

— det(A — \,,) = 0.

The eigenvalue \ tells whether the special vector z is stretched or shrunk or reversed or left
unchanged—when it is multiplied by A. We may find A =2 or 1/2 or 1 or -1. The eigenvalue
could be zero! Then Az = Ox means that this eigenvector x is in the nullspace. Geometrically,
the eigenvector corresponding to a nonzero eigenvalue points in a direction that is stretched
by the linear mapping. The eigenvalue is the factor by which it is stretched. If the eigenvalue
is negative, the direction of the stretching is flipped.

— A matrix A and its transpose A7 possess the same eigenvalues, but not necessarily the
same eigenvectors.

— Symmetric, positive definite matrices always have positive, real eigenvalues.

— Similar matrices possess the same eigenvalues. Therefore, a linear mapping ® has eigen-
values that are independent of the choice of basis of its transformation matrix. This makes
eigenvalues, together with the determinant and the trace, key characteristic parameters
of a linear mapping as they are all invariant under basis change.

Given a matrix A € R™*™, we can always obtain a symmetric, positive semidefinite matrix
S € R™*™ by defining
S:=ATA



The determinant of a matrix A € R™*™ is the product of its eigenvalues, i.e.,

n

det(A) =[]\

i=1

where \; are (possibly repeated) eigenvalues of A.



4 Vector Calculus.

For h > 0 the derivative of f at x is defined as the limit:

ﬁ = lim hRightarrowOw
dx h

The derivative of f points in the direction of steepest ascent of f.

Taylor series is a representation of a function f as an infinite sum of terms. These terms
are determined using derivatives of f evaluated at xy. The Taylor polynomial of degree n of
f : RRightarrowR at xq is defined as

T.(z):= Z 7]6(' 0) (z — x0)*

n L pk) (g
k=0

where f(*)(z¢) is the kth derivative of f at z and ! (k;(!m") are the coefficients of the polynomial.

Differentiation rules:

f(@)g(2))" = f'(2)g(x) + f(z)g' (x)

M)/ _ f(@)g(z)~f(2)g'(z)
(g9(2))?

f(@) +9(x)) = f'(z) + g'(z)

The generalization of the derivative to functions of several variables is the gradient.
Chain rule:

d _dg df
@(g(f(:c)) = E%

The collection of all first-order partial derivatives of a vector-valued function f : R"RightarrowR™
is called the Jacobian.

In deep learning, we have

y = (fxofx—10...0f1)(x) = fu(fe—1(...(f1(2))...))

where x are the inputs, y are the observations, and every function f;,7 = 1, ..., k, possesses its
own parameters.

The Hessian is the collection of all second-order partial derivatives. As an example

af  df
H = dx? dxdy

d>f df
dxdy dy?

The Hessian measures the curvature of the function locally around (z,y).



5 Probability and Distributions.

e Probability space:

— The sample space 2: The sample space is the set of all possible outcomes of the experi-
ment, usually denoted by 2.

— The event space A: The event space is the space of potential results of the experiment.
A subset A of the sample space (2 is in the event space A if at the end of the experiment
we can observe whether a particular outcome w € Q is in A.

— The probability P: With each event A € A, we associate a number P(A) that measures
the probability or degree of belief that the event will occur.

In machine learning, we often avoid explicitly referring to the probability space, but instead
refer to probabilities on quantities of interest, which we denote by T'. We refer to T as target
space. Association or mapping from 2 to T is called a random variable.

e Probability density function (PDF): A function f : RPRightarrowR is called a PDF if:

—~Vz eRP: f(z) >0

— Its integral exists and

/RD flz)de =1

In a more precise sense, the PDF is used to specify the probability of the random variable falling
within a particular range of values, as opposed to taking on any one value. For probability
mass functions (PMF) of discrete random variables, the integral is replaced with a sum. We
associate a random variable X with this function f by

Pla< X <b) :/bf(a:)dx

where a,b € R and = € R are outcomes of the continuous random variable X.
In contrast to discrete random variables, the probability of a continuous random variable X
taking a particular value P(X = x) is zero.

e Sum rule (marginalization property):

Zyey p(x,y) if y is discrete
p(z) = e
fy p(x,y)dy if y is continuous

e Product rule:
p(z,y) = p(ylz)p(z)
Bayes’ rule:
p(ylz)p(x)
p(y)

where p(z|y) is posterior, p(y|x) is likelihood, p(x) is prior, and p(y) is evidence. Bayes’ rule
allows us to invert the relationship between x and y given by the likelihood.

p(zly) =

e Expected value of a function g : RRightarrowR of a univariate continuous random variable
X ~ p(x) is given by

Exlg(x)] = /X g(0)p(x)dz



e Mean of a random variable X with states # € R” is an average and is defined as
Ex, [a1]
Bxle=| . |e®r?
Exlap)
where
Ex,[zq4] == {Zmex zip(za = i) if X is a discrete random variable

/ x Tap(wq)drg if X is a continuous random variable

e Two random variables are independent iff

p(z,y) = p(z)p(y)
If z,y are independent, then:
— p(zly) = p(x) and p(y|z) = p(y)
— p(zly, z) = p(x]2)

e Gaussian distribution. For a univariate random variable, the Gaussian distribution has a
density that is given by

1 (z — p)?

2
x|p, o) = exp(—

p(|p, o) — P(=—55 )

The univariate Gaussian distribution (or "normal distribution,” or "bell curve”) is the distri-

bution you get when you do the same thing over and over again and average the results.

)

e Bernoulli distribution is a distribution for a single binary random variable X with state
x € {0,1}. It is governed by a single continuous parameter p € [0, 1] that represents the
probability of X = 1. The Bernoulli distribution Ber(u) is defined as

plalp) =p* (1 =)'~ x€{0,1}
Elz] =p
Vi) = (1 - p)
where E[z] and V[z] are the mean and variance of the binary random variable X.

e Binomial distribution is a generalization of the Bernoulli distribution to a distribution over
integers. In particular, the Binomial can be used to describe the probability of observing m
occurrences of X =1 in a set of N samples from a Bernoulli distribution where p(X = 1) =
w € [0,1]. The Binomial distribution Bin(N, i) is defined as

p(m|N,p) = <Jn\i)um(1 — )N

E[m]=Nu
Vim] = Np(l - p)

where E[z] and V[z] are the mean and variance of m, respectively. An example where the
Binomial could be used is if we want to describe the probability of observing m heads in N
coin-flip experiments if the probability for observing head in a single experiment is p.



e Beta distribution is a distribution over a continuous random variable p € [0,1], which is
often used to represent the probability for some binary event (e.g., the parameter governing the
Bernoulli distribution). The Beta distribution Beta(a, 8) itself is governed by two parameters
a > 0,8 >0 and is defined as

p(pla, B) = Wual(l — )it
Bl =
_ af
Vi = (a+B8)2a+B+1)

where I'(.) is the Gamma function defined as
I(t) ::/ ' texp(—x)dx t>0
0

L(t+1) = tI(t)

Intuitively, @ moves probability mass toward 1, whereas 8 moves probability mass toward O.

10



6 Continuous Optimization.

e Convex functions do not exhibit tricky dependency on the starting point of the optimization
algorithm. For convex functions, all local minimums are global minimum. It turns out that
many machine learning objective functions are designed such that they are convex.

e For a differentiable function, if

1 = 2o — 7((VF)(20))"

for a small step-site v > 0, then f(z1) < f(x¢). The sequence f(xg) > f(z1) > ... converges
to a local minimum.

e Choosing a good step-size is important in gradient descent. If the step-size is too small, gradient
descent can be slow. If the step-size is chosen too large, gradient descent can overshoot, fail to
converge, or even diverge. Adaptive gradient methods rescale the step-size at each iteration,
depending on local properties of the function. There are two simple heuristics:

— When the function value increases after a gradient step, the step-size was too large. Undo
the step and decrease the step-size.

— When the function value decreases the step could have been larger. Try to increase the
step-size.

e Gradient descent with momentum is a method that introduces an additional term to remember
what happened in the previous iteration. This memory dampens oscillations and smoothes
out the gradient updates. The momentum-based method remembers the update Ax; at each
iteration 7 and determines the next update as a linear combination of the current and previous
gradients

Tiv1 =2 — Yi(V)(2:)" + alz;

Al‘i =i — Ti—1
where « € [0, 1].

e Computing the gradient can be very time consuming. However, often it is possible to find
a ”cheap” approximation of the gradient. Approximating the gradient is still useful as long
as it points in roughly the same direction as the true gradient. Stochastic gradient descent
(often shortened as SGD) is a stochastic approximation of the gradient descent method for
minimizing an objective function that is written as a sum of differentiable functions. The
word stochastic here refers to the fact that we acknowledge that we do not know the gradient
precisely, but instead only know a noisy approximation to it.

Given n =1, ..., N data points, objective function can be defined as

N
L) =" La(6)
n=1

where 6 is the set of parameters of the network. By updating the vector of parameters according

to
N

Oit1 = 0i — %i(VL(0:)" = 0; — Z(VLn(Qi))T

n=1
When the training set is enormous and/or no simple formulas exist, evaluating the sums of
gradients becomes very expensive. Considering the term ij:l(VLn(Gi))T, we can reduce the
amount of computation by taking a sum over a smaller set of L,,. In contrast to batch gradient
descent, which uses all L,, for n = 1,..., N, we randomly choose a subset of L,, for mini-batch
gradient descent. The key insight about why taking a subset of data is sensible is to realize
that for gradient descent to converge, we only require that the gradient is an unbiased estimate
of the true gradient.

11



e Constrained Optimization and Lagrange Multipliers. What if there are additional
constraints? That is, for real-valued functions ¢; : RPRightarrowR for i = 1,...,m, we consider
the constrained optimization problem

mgn f(z)

subject to g;(z) < O0foralli=1,...,m
One obvious, but not very practical, way of converting the constrained problem into an un-
constrained one is to use an indicator function

m

Ja) = @)+ 3 o)

where 1(z) is an infinite step function

1(2)_{0 2<0

00 otherwise

This gives infinite penalty if the constraint is not satisfied, and hence would provide the same
solution. However, this infinite step function is equally difficult to optimize. We can overcome
this difficulty by introducing Lagrange multipliers. The idea of Lagrange multipliers is to
replace the step function with a linear function. We do this by introducing the Lagrange
multipliers A; > 0 corresponding to each inequality constraint respectively so that

L(x,\) = f(2) + > _ Nigi(z) = f(x) + \g(x)
i=1

In general, duality in optimization is the idea of converting an optimization problem in one set
of variables x (called the primal variables), into another optimization problem in a different
set of variables A (called the dual variables). The main problem is

mﬂﬁin f(x)

subject to g;(x) <0 foralli=1,...,m
and its associated Lagrangian dual problem is given by

D

g P
subject to A > 0

where A are the dual variables and D(A) = mingcraL(z, A).

e Convex optimization. A set C is a convex set if for any x,y € C and for any scalar  with
0<6<1, we have
bz +(1—-0)yeC

Convex sets are sets such that a straight line connecting any two elements of the set lie inside
the set. Convex functions are functions such that a straight line between any two points of
the function lie above the function.

Let function f : RPRightarrowR be a function whose domain is a convex set. The function f
is a convex function if for all x,y in the domain of f, and for any scalar § with 0 < 0 <1, we
have

fOz+(1—=0)y) <O0f(x)+ (1—06)f(y)

A concave function is the negative of a convex function.

12



7 When Models Meet Data.

e The distinction between parameters and hyperparameters is somewhat arbitrary, and is mostly
driven by the distinction between what can be numerically optimized versus what needs to
use search techniques. Another way to consider the distinction is to consider parameters as
the explicit parameters of a probabilistic model, and to consider hyperparameters (higher-level
parameters) as parameters that control the distribution of these explicit parameters.

e The set of examples (z1,y1), ..., (TN, yn) is independent and identically distributed. The word
independent means that two data points (x;,v;) and (z;,y;) do not statistically depend on
each other, meaning that the empirical mean is a good estimate of the population mean. This
implies that we can use the empirical mean of the loss on the training data.

e In principle, the design of the loss function for empirical risk minimization should correspond
directly to the performance measure specified by the machine learning task.

e The idea behind maximum likelihood estimation (MLE) is to define a function of the parame-
ters that enables us to find a model that fits the data well. For data represented by a random
variable z and for a family of probability densities p(x|f) parametrized by 6, the negative
log-likelihood is given by

Ly (0) = —logp(x|0)

e If we have prior knowledge about the distribution of the parameters 6, we can multiply an
additional term to the likelihood. This additional term is a prior probability distribution on
parameters p(6). Bayes’ theorem allows us to compute a posterior distribution p(f, z) (the more
specific knowledge) on the parameters 6 from general prior statements (prior distribution) p(6)
and the function p(z,#) that prior links the parameters 6 and the observed data z (called the

likelihood):
p(z(0)p(6)
p(x)
Recall that we are interested in finding the parameter 6 that maximizes the posterior. Since

the distribution p(z) does not depend on 6, we can ignore the value of the denominator for
the optimization and obtain

p(0]z) =

p(0z) o« p(x[0)p(6)

13



8 Linear Regression (Curve Fitting).

e In regression, we aim to find a function f that maps inputs 2 € R to corresponding function
values f(z) € R. We assume we are given a set of training inputs x,, and corresponding noisy
observations y, = f(x,) + €, where € is an i.i.d. random variable that describes measure-
ment /observation noise and potentially unmodeled processes.

e A widely used approach to finding the desired parameters 6,5, is maximum likelihood esti-
mation. Intuitively, maximizing the likelihood means maximizing the predictive distribution
of the training data given the model parameters. The likelihood p(y|z,6) is not a probability
distribution in 6: It is simply a function of the parameters 6 but does not integrate to 1 (i.e.,it
is unnormalized), and may not even be integrable with respect to 6. To find the desired pa-
rameters 6,7, that maximize the likelihood, we typically perform gradient ascent (or gradient
descent on the negative likelihood).

e linear regression offers us a way to fit nonlinear functions within the linear regression frame-
work: Since ”linear regression” only refers to ”linear in the parameters”, we can perform an
arbitrary nonlinear transformation ¢(x) of the inputs x and then linearly combine the compo-
nents of this transformation.
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9 Dimensionality Reduction with Principal Component Anal-
ysis.

e In PCA, we are interested in finding projections Z,, of data points x,, that are as similar to the
original data points as possible, but which have a significantly lower intrinsic dimensionality.

e The variance of the data projected onto a one-dimensional subspace equals the eigenvalue
that is associated with the basis vector bl that spans this subspace. Therefore, to maximize
the variance of the low-dimensional code, we choose the basis vector associated with the
largest eigenvalue of the data covariance matrix. This eigenvector is called the first principal
component.

e In the following, we will go through the individual steps of PCA using a running example.
We are given a two-dimensional dataset, and we want to use PCA to project it onto a one-
dimensional subspace.

— Mean subtraction: We start by centering the data by computing the mean p of the
dataset and subtracting it from every single data point. This ensures that the dataset
has mean 0. Mean subtraction is not strictly necessary but reduces the risk of numerical
problems.

— Standardization: Divide the data points by the standard deviation o4 of the dataset
for every dimension d = 1,...,D. Now the data is unit free, and it has variance 1 along
each axis. This step completes the standardization of the data.

— Eigendecomposition of the covariance matrix: Compute the data covariance ma-
trix and its eigenvalues and corresponding eigenvectors. Since the covariance matrix is
symmetric, the spectral theorem states that we can find an ONB of eigenvectors.

— Projection: We can project any data point x, € RP onto the principal subspace: To
get this right, we need to standardize x, using the mean pg and standard deviation o4 of
the training data in the dth dimension, respectively.

15



10

Classification with Support Vector Machines.

The maximum likelihood view proposes a model based on a probabilistic view of the data
distribution, from which an optimization problem is derived. In contrast, the SVM view starts
by designing a particular function that is to be optimized during training, based on geometric
intuitions.

Given two examples represented as vectors x; and x;, one way to compute the similarity be-
tween them is using an inner product < x;,z; >. Recall that inner products are closely related
to the angle between two vectors. The value of the inner product between two vectors depends
on the length (norm) of each vector. Furthermore, inner products allow us to rigorously define
geometric concepts such as orthogonality and projections.

The concept of the margin turns out to be highly pervasive in machine learning.

In the case where data is not linearly separable, we may wish to allow some examples to fall
within the margin region, or even to be on the wrong side of the hyperplane. The model that
allows for some classification errors is called the soft margin SVM.

The function of kernel is to take data as input and transform it into the required form. The
kernel function is what is applied on each data instance to map the original non-linear obser-
vations into a higher-dimensional space in which they become separable.
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